(New page: This page uses the function <math>f = \sin(t)</math> ==Power== <font size="5"> <math>P = \int_{t_1}^{t_2} \! |f(t)|^2\ dt</math> <math>P = \int_0^2\pi \! |\sin(t)|^2\ dt</math> <mat...)
 
 
Line 1: Line 1:
This page uses the function  <math>f = \sin(t)</math>
+
==Initial Info==
 +
 
 +
This page uses the function  <math>f(t) = \sin(t)</math>
  
  

Latest revision as of 10:12, 2 September 2008

Initial Info

This page uses the function $ f(t) = \sin(t) $


Power

$ P = \int_{t_1}^{t_2} \! |f(t)|^2\ dt $


$ P = \int_0^2\pi \! |\sin(t)|^2\ dt $


$ P = \int_0^2\pi \! |{(1-\cos(2t))\over 2}| dt $


$ P = {1\over 2}\int_0^2\pi \! |1-\cos(2t)| dt $


$ P = {1\over 2} ( t - {1\over 2}\sin(2t) )\mid_0^{2\pi} $


$ P = {1\over 2}t - {1\over 4}\sin(2t) )\mid_0^{2\pi} $


$ P = {1\over 2}(2\pi) - {1\over 4}\sin(2*2\pi) - [{1\over 2}(0) - {1\over 4}\sin(2*0)] $


$ P = \pi - {1\over4}\sin(4\pi) = \pi + 0 $


$ P = \pi $




Energy

$ E = {1\over(t2-t1)}\int_{t_1}^{t_2} \! |f(t)|^2 dt $


$ E = {1\over(2\pi-0)}\int_{0}^{2\pi} \! |\sin(t)|^2 dt $


$ E = {1\over(2\pi-0)}\int_{0}^{2\pi} \! |{(1-\cos(2t))\over 2}| dt $


$ E = {1\over{2\pi}}*{1\over 2}\int_0^{2\pi} \! |1-\cos(2t)| dt $


$ E = {1\over{4\pi}} * [ t - {1\over2}\sin(2t) ]_0^{2\pi} $


$ E = {1\over{4\pi}} * [ 2\pi - {1\over2}\sin(4\pi) - ( 0 - {1\over2}\sin(0) ) ] $


$ E = {1\over{4\pi}} * ( 2\pi ) $


$ E = {1\over2} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal