Line 3: Line 3:
 
The energy can be computed using the formula:
 
The energy can be computed using the formula:
  
<math>E = \int_{b}^{a}{|x(t)|^2}dt\,</math>
+
:<math>E = \int_{b}^{a}{|x(t)|^2}dt\,</math>
  
  
Suppose we want to compute the energy of the signal <math>cos(t)</math> in the interval 0 to 2
+
Suppose we want to compute the energy of the signal <math>cos(t)</math> in the interval <math>0</math> to <math>2\pi</math>.
 +
 
 +
The formula then becomes:
 +
 
 +
 
 +
:<math>E = \int_{0}^{2\pi}{|cos(t)|^2}dt\,</math>
 +
 
 +
 
 +
Using trigonometric identity, <math>cos^2(t) = \frac{1}{2} + \frac{1}{2}cos(2t)\,</math>
 +
 
 +
This implies:
 +
 
 +
 
 +
:<math>E = \frac{1}{2}\int_{0}^{2\pi}1 + cos(2t)dt\,</math>
 +
 
 +
 
 +
Integrating yields
 +
 
 +
 
 +
:<math>E = \frac{1}{2}\left(t + \frac{1}{2}sin(2t)\right)\,</math>

Revision as of 19:52, 4 September 2008

Suppose a signal is defined by $ cos(t) $

The energy can be computed using the formula:

$ E = \int_{b}^{a}{|x(t)|^2}dt\, $


Suppose we want to compute the energy of the signal $ cos(t) $ in the interval $ 0 $ to $ 2\pi $.

The formula then becomes:


$ E = \int_{0}^{2\pi}{|cos(t)|^2}dt\, $


Using trigonometric identity, $ cos^2(t) = \frac{1}{2} + \frac{1}{2}cos(2t)\, $

This implies:


$ E = \frac{1}{2}\int_{0}^{2\pi}1 + cos(2t)dt\, $


Integrating yields


$ E = \frac{1}{2}\left(t + \frac{1}{2}sin(2t)\right)\, $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch