Line 13: Line 13:
 
<math>P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt</math>
 
<math>P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt</math>
  
<math> P_\infty 1\2*N+1 x lim N-> -\infty \int_{-N}^{N} [x(N)]^2 </math>
+
<math> P_\infty 1* lim N-> -\infty \int_{-N}^{N} [x(N)]^2 </math>

Revision as of 10:39, 7 September 2008

Energy

$ E_\infty = \frac{1}{t_2-t_1}\int_{t_1}^{t_2}[x(t)]^2 dt $

ex: $ E_\infty = \int_{-\infty}^{\infty} [x(t)]^2 dt $

$ E_\infty = \int_{0}^{3} [1]^2 $

$ 1 = 1+1+1+1 = 4 $


Power

$ P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt $

$ P_\infty 1* lim N-> -\infty \int_{-N}^{N} [x(N)]^2 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood