Line 3: Line 3:
  
 
ex:
 
ex:
<math> E_\infty = \int_{-\infty}^{\infty} [x(t)]^2 dt
+
<math> E_\infty = \int_{-\infty}^{\infty} [x(t)]^2 dt</math>
      E_\infty = \int_{0}^{3} [1]^2 </math>
+
  
 +
<math>      E_\infty = \int_{0}^{3} [1]^2 </math>
  
  
 
== Power ==
 
== Power ==
 
<math>P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt</math>
 
<math>P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt</math>

Revision as of 10:36, 7 September 2008

Energy

$ E_\infty = \frac{1}{t_2-t_1}\int_{t_1}^{t_2}[x(t)]^2 dt $

ex: $ E_\infty = \int_{-\infty}^{\infty} [x(t)]^2 dt $

$ E_\infty = \int_{0}^{3} [1]^2 $


Power

$ P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett