Revision as of 15:49, 5 September 2008 by Apdelanc (Talk)

Energy of a signal

Consider the signal $ \ y = \sin(t) $ Lets find the energy over one cycle:

$ Energy = \int_{t_1}^{t_2}\!|x(t)|^2 dt $

$ Energy = \int_{0}^{2 \pi}\!|sin(t)|^2 dt $

$ Energy = \int_{0}^{2 \pi}\!(\frac{1-cos(2t)}{2}) dt $

$ Energy = \pi - \frac{1}{4} \sin(4 \pi) $

$ \ Energy = \pi $

Average Power of a Signal

$ Average Power = {1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt $

$ Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!|sin(t)|^2 dt $

$ Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!\frac{(1-cos(2t)}{2}^2 dt $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva