(Average Power of a Signal)
(Average Power of a Signal)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Energy of a signal==
 
==Energy of a signal==
 
Consider the signal <math>\ y = \sin(t)</math>
 
Consider the signal <math>\ y = \sin(t)</math>
Lets find the energy over one cycle:
+
Lets find the energy over two cycles:
  
 
<math>Energy = \int_{t_1}^{t_2}\!|x(t)|^2 dt</math>
 
<math>Energy = \int_{t_1}^{t_2}\!|x(t)|^2 dt</math>
  
<math>Energy = \int_{0}^{2 \pi}\!|sin(t)|^2 dt</math>
+
<math>Energy = \int_{0}^{4 \pi}\!|sin(t)|^2 dt</math>
  
<math>Energy = \int_{0}^{2 \pi}\!(\frac{1-cos(2t)}{2}) dt</math>
+
<math>Energy = \int_{0}^{4 \pi}\!(\frac{1-cos(2t)}{2}) dt</math>
  
<math>Energy = \pi - \frac{1}{4} \sin(4 \pi)</math>
+
<math>Energy = 2 \pi - \frac{1}{4} \sin(8 \pi)</math>
  
<math>\ Energy = \pi </math>
+
<math>\ Energy = 2 \pi </math>
  
 
==Average Power of a Signal==
 
==Average Power of a Signal==
 +
Here we compute the average power of the same signal above over two cycles:
 +
 
<math>Average Power = {1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt</math>
 
<math>Average Power = {1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt</math>
  
 
<math>Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!|sin(t)|^2 dt</math>
 
<math>Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!|sin(t)|^2 dt</math>
  
<math>Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!\frac{(1-cos(2t)}{2}^2 dt</math>
+
<math>Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!\frac{(1-cos(2t)}{2} dt</math>
 +
 
 +
<math>Average Power= \frac{2 \pi - \frac{1}{4} \sin(8 \pi)}{4 \pi}</math>
 +
 
 +
<math>\ Average Power= \frac{1}{2} </math>

Latest revision as of 15:58, 5 September 2008

Energy of a signal

Consider the signal $ \ y = \sin(t) $ Lets find the energy over two cycles:

$ Energy = \int_{t_1}^{t_2}\!|x(t)|^2 dt $

$ Energy = \int_{0}^{4 \pi}\!|sin(t)|^2 dt $

$ Energy = \int_{0}^{4 \pi}\!(\frac{1-cos(2t)}{2}) dt $

$ Energy = 2 \pi - \frac{1}{4} \sin(8 \pi) $

$ \ Energy = 2 \pi $

Average Power of a Signal

Here we compute the average power of the same signal above over two cycles:

$ Average Power = {1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt $

$ Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!|sin(t)|^2 dt $

$ Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!\frac{(1-cos(2t)}{2} dt $

$ Average Power= \frac{2 \pi - \frac{1}{4} \sin(8 \pi)}{4 \pi} $

$ \ Average Power= \frac{1}{2} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett