(Energy of a signal)
(Average Power of a Signal)
Line 14: Line 14:
  
 
==Average Power of a Signal==
 
==Average Power of a Signal==
<math>Avgerage Power = {1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt</math>
+
<math>Average Power = {1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt</math>
 +
 
 +
<math>Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!|sin(t)|^2 dt</math>
 +
 
 +
<math>Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!\frac{(1-cos(2t)}{2}^2 dt</math>

Revision as of 15:49, 5 September 2008

Energy of a signal

Consider the signal $ \ y = \sin(t) $ Lets find the energy over one cycle:

$ Energy = \int_{t_1}^{t_2}\!|x(t)|^2 dt $

$ Energy = \int_{0}^{2 \pi}\!|sin(t)|^2 dt $

$ Energy = \int_{0}^{2 \pi}\!(\frac{1-cos(2t)}{2}) dt $

$ Energy = \pi - \frac{1}{4} \sin(4 \pi) $

$ \ Energy = \pi $

Average Power of a Signal

$ Average Power = {1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt $

$ Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!|sin(t)|^2 dt $

$ Average Power = {1\over(4 \pi -0)}\int_{0}^{4 \pi}\!\frac{(1-cos(2t)}{2}^2 dt $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn