(Energy of a signal)
Line 7: Line 7:
 
<math>Energy = \int_{0}^{2 \pi}\!|sin(t)|^2 dt</math>
 
<math>Energy = \int_{0}^{2 \pi}\!|sin(t)|^2 dt</math>
  
<math>Energy = \int_{0}^{2 \pi}\!|frac{1-cos(2t)| dt</math>
+
<math>Energy = \int_{0}^{2 \pi}\!(\frac{1-cos(2t)}{2}) dt</math>
  
 
<math>Energy = \int_{0}^{2 \pi}\!|sin(t)|^2 dt</math>
 
<math>Energy = \int_{0}^{2 \pi}\!|sin(t)|^2 dt</math>
 
 
  
 
==Average Power of a Signal==
 
==Average Power of a Signal==
 
<math>Avg. Power = {1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt</math>
 
<math>Avg. Power = {1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt</math>

Revision as of 15:37, 5 September 2008

Energy of a signal

Consider the signal $ \ y = \sin(t) $ Lets find the energy over one cycle:

$ Energy = \int_{t_1}^{t_2}\!|x(t)|^2 dt $

$ Energy = \int_{0}^{2 \pi}\!|sin(t)|^2 dt $

$ Energy = \int_{0}^{2 \pi}\!(\frac{1-cos(2t)}{2}) dt $

$ Energy = \int_{0}^{2 \pi}\!|sin(t)|^2 dt $

Average Power of a Signal

$ Avg. Power = {1\over(t_2-t_1)}\int_{t_1}^{t_2}\!|x(t)|^2 dt $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood