Revision as of 13:39, 4 September 2008 by Pjcannon (Talk)

Periodic Functions in Continuous Time

  • Functions are classified as periodic if there exists $ T>0\! $ such that $ y(x+T)=y(x)\! $.


The following is an example of a periodic function:

$ y(x)=sin(pi*x)\! $
Sinpix ECE301Fall2008mboutin.jpg

This function is periodic because $ y(x)=y(x+T)\! $ for $ T=0, 2, 4, 6\! $ etc.

Non-Periodic Functions in Continuous Time

  • Functions are classified as non-periodic if there exists no $ T\! $ such that $ y(x+T)=y(x)\! $.


The following is an example of a non-periodic function:

$ y(x)=1/e^x\! $
Nonper ECE301Fall2008mboutin.JPG

This function is not periodic because there exists no T where $ y(x)=y(x+T)\! $.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett