Line 1: Line 1:
 
==Periodic Functions==
 
==Periodic Functions==
The function <math>f(t)=sin(t+T)</math> is periodic, with a period of <math>T=2\pi</math>.  This means that for <math>T=2n\pi</math>, n an integer, the function will be unchanged from when <math>T=0</math>.
+
The function <math>f(t)=sin(t-T)</math> is periodic, with a period of <math>T=2\pi</math>.  This means that for <math>T=2n\pi</math>, n an integer, the function will be unchanged from when <math>T=0</math>.
  
[[Image:Periodic_blaskows_ECE301Fall2008mboutin.gif|frame|center|An example of a periodic function <math>f(t)=sin(t+T)</math>.  The dashed red line represents adding various values of <math>T</math> from <math>T=0</math> to <math>T=2\pi</math>.  One can see that when <math>T=2\pi</math>, the function is unchanged.]]
+
[[Image:Periodic_blaskows_ECE301Fall2008mboutin.gif|frame|center|An example of a periodic function <math>f(t)=sin(t-T)</math>.  The dashed red line represents various values of <math>T</math> from <math>T=0</math> to <math>T=2\pi</math>.  One can see that when <math>T=2\pi</math>, the function is unchanged.]]
  
 
==Non-periodic Functions==
 
==Non-periodic Functions==

Revision as of 06:46, 2 September 2008

Periodic Functions

The function $ f(t)=sin(t-T) $ is periodic, with a period of $ T=2\pi $. This means that for $ T=2n\pi $, n an integer, the function will be unchanged from when $ T=0 $.

An example of a periodic function $ f(t)=sin(t-T) $. The dashed red line represents various values of $ T $ from $ T=0 $ to $ T=2\pi $. One can see that when $ T=2\pi $, the function is unchanged.

Non-periodic Functions

A non-periodic function does not remain self-similar for all integer multiples of its period. A decaying exponential is an example of a non-periodic function. The distance between consecutive peaks does not remain constant for all values of $ x $. Presented here is the function $ f(t)=e^{0.2t}*sin(10t) $.

An example of a non-periodic function $ f(t)=e^{0.2t}*sin(10t) $.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett