Line 6: Line 6:
  
 
The behavior of this spring-mass system can then be modeled using complex numbers.
 
The behavior of this spring-mass system can then be modeled using complex numbers.
 +
  
 +
<math> Displacement=A_1*e^{j * \omega_0 * t} + A_2*e^{-j * \omega_0 * t}</math>
  
Displacement
+
<math>Velocity=A_1*\omega_0*e^{j * \omega_0 * t} + A_2*\omega_0*e^{-j * \omega_0 * t} </math>
  
<math> x=A_1*e^{j * \omega_0 * t} + A_2*e^{-j * \omega_0 * t}
+
<math>Acceleration=A*\omega_0^2*e^{j * \omega_0 * t} + B*\omega_0^2*e^{-j * \omega_0 * t} </math>
 +
 
 +
Where  ''A'' and ''B'' are constants and ''t'' is time.

Revision as of 16:36, 4 September 2008

Complex numbers can be used to represent waves and calculate their behavior. The simplest example of complex waves would be a simple mass, m, attached to a spring of stiffness S.

File:ScottHamiltonspring.jpg

The natural frequency of oscillation for this system is computed as $ \omega_0 ^2 = \frac{S}{m} $.

The behavior of this spring-mass system can then be modeled using complex numbers.


$ Displacement=A_1*e^{j * \omega_0 * t} + A_2*e^{-j * \omega_0 * t} $

$ Velocity=A_1*\omega_0*e^{j * \omega_0 * t} + A_2*\omega_0*e^{-j * \omega_0 * t} $

$ Acceleration=A*\omega_0^2*e^{j * \omega_0 * t} + B*\omega_0^2*e^{-j * \omega_0 * t} $

Where A and B are constants and t is time.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett