(Basics)
Line 17: Line 17:
 
   
 
   
  
*<math>\frac{|Ae^{i\phi}|}{|Be^{i\phi}|} = \frac{A}{B}\frac{|e^{i\phi}|}{|e^{i\phi}|} = \frac{A}{B}</math>
+
*<math>\frac{|Ae^{i\phi_{1}}|}{|Be^{i\phi_{2}}|} = \frac{A}{B}\frac{|e^{i\phi_{1}}|}{|e^{i\phi_{2}}|} = \frac{A}{B}</math>
  
  
*<math>|\frac{Ae^{i\phi}}{Be^{i\phi}}| = \frac{A}{B}|e^{i(\phi-\phi)}| = \frac{A}{B}</math>
+
*<math>|\frac{Ae^{i\phi_{1}}}{Be^{i\phi_{2}}}| = \frac{A}{B}|e^{i(\phi_{1}-\phi_{2})}| = \frac{A}{B}</math>
  
  
*<math>|\frac{Ae^{i\phi}}{Be^{i\phi}}| = \frac{|Ae^{i\phi}|}{|Be^{i\phi}|}</math>
+
*<math>|\frac{Ae^{i\phi_{1}}}{Be^{i\phi_{2}}}| = \frac{|Ae^{i\phi_{1}}|}{|Be^{i\phi_{2}}|}</math>

Revision as of 19:15, 4 September 2008

Complex Modulus

Complex Modulus, also known as the "Norm" of a complex number, is represented as $ |z| $.

$ |x + iy| = \sqrt{x^2 + y^2} $


In exponential form for $ |z| $

$ |re^{i\phi}| = r $

(This format is used when dealing with Phasors)


Basics

  • $ |z|^2 $ of $ |z| $ is known as the Absolute Square.


  • $ \frac{|Ae^{i\phi_{1}}|}{|Be^{i\phi_{2}}|} = \frac{A}{B}\frac{|e^{i\phi_{1}}|}{|e^{i\phi_{2}}|} = \frac{A}{B} $


  • $ |\frac{Ae^{i\phi_{1}}}{Be^{i\phi_{2}}}| = \frac{A}{B}|e^{i(\phi_{1}-\phi_{2})}| = \frac{A}{B} $


  • $ |\frac{Ae^{i\phi_{1}}}{Be^{i\phi_{2}}}| = \frac{|Ae^{i\phi_{1}}|}{|Be^{i\phi_{2}}|} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood