Line 3: Line 3:
  
 
<math>|x + iy| = \sqrt{x^2 + y^2}</math>
 
<math>|x + iy| = \sqrt{x^2 + y^2}</math>
 +
  
 
In exponential form for <math>|z|</math>  
 
In exponential form for <math>|z|</math>  
Line 13: Line 14:
 
== Basics ==
 
== Basics ==
  
<math>|z|^2</math> of <math>|z|</math> is known as the '''Absolute Square'''.
+
*<math>|z|^2</math> of <math>|z|</math> is known as the '''Absolute Square'''.
 
   
 
   
<math>\frac{|Ae^{i\phi}|}{|Be^{i\phi}|} = \frac{A}{B}\frac{e^i\phi}{e^i\phi}</math>
+
 
 +
*<math>\frac{|Ae^{i\phi}|}{|Be^{i\phi}|} = \frac{A}{B}\frac{|e^{i\phi}|}{|e^{i\phi}|} = \frac{A}{B}</math>
 +
 
 +
 
 +
*<math>|\frac{Ae^{i\phi}}{Be^{i\phi}}| = \frac{A}{B}|e^{i(\phi-\phi)}| = \frac{A}{B}</math>
 +
 
 +
 
 +
*<math>|\frac{Ae^{i\phi}}{Be^{i\phi}}| = \frac{|Ae^{i\phi}|}{|Be^{i\phi}|}</math>

Revision as of 19:12, 4 September 2008

Complex Modulus

Complex Modulus, also known as the "Norm" of a complex number, is represented as $ |z| $.

$ |x + iy| = \sqrt{x^2 + y^2} $


In exponential form for $ |z| $

$ |re^{i\phi}| = r $

(This format is used when dealing with Phasors)


Basics

  • $ |z|^2 $ of $ |z| $ is known as the Absolute Square.


  • $ \frac{|Ae^{i\phi}|}{|Be^{i\phi}|} = \frac{A}{B}\frac{|e^{i\phi}|}{|e^{i\phi}|} = \frac{A}{B} $


  • $ |\frac{Ae^{i\phi}}{Be^{i\phi}}| = \frac{A}{B}|e^{i(\phi-\phi)}| = \frac{A}{B} $


  • $ |\frac{Ae^{i\phi}}{Be^{i\phi}}| = \frac{|Ae^{i\phi}|}{|Be^{i\phi}|} $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett