(Forms of Complex Numbers)
(Operations of Complex Numbers)
 
Line 13: Line 13:
 
Product:
 
Product:
  
In rectangular form: <math>z_{1}=(a + bj) , z_{2} =(c + jd)</math> so <math>z_{1}(z_{2}) = (a + jb)(c + jd) = ac - bd + j(bc + ad)</math>
+
In rectangular form: <math>\ z_{1}=(a + bj) , z_{2} =(c + jd)</math> so <math>\ z_{1}(z_{2}) = (a + jb)(c + jd) = ac - bd + j(bc + ad)</math>
  
 
In polar form <math>z_{1}(z_{2}) = \rho_{1}e^{j\Theta_{1}}\rho_{2}e^{j\Theta{2}} = \rho_{1}\rho_{2}e^{j(\Theta_{1}+\Theta{2})}</math>
 
In polar form <math>z_{1}(z_{2}) = \rho_{1}e^{j\Theta_{1}}\rho_{2}e^{j\Theta{2}} = \rho_{1}\rho_{2}e^{j(\Theta_{1}+\Theta{2})}</math>

Latest revision as of 10:46, 5 September 2008

Forms of Complex Numbers

Rectangular:

The basic form of a complex number in rectangular form is $ \ z = a + jb $ where $ j = \sqrt{-1} $. $ i $ is sometimes used instead of $ j $

Polar:

The polar representation of a complex number is given by $ \ \rho cos(\Theta)+j\rho sin(\Theta) = \rho e^{j\Theta} $. This is also known as Euler's Identity. Using the coefficients of the rectangular form $ \rho = \sqrt{a^2 + b^2} $ and $ \ \Theta = tan^{-1}(b/a) $.

Operations of Complex Numbers

Product:

In rectangular form: $ \ z_{1}=(a + bj) , z_{2} =(c + jd) $ so $ \ z_{1}(z_{2}) = (a + jb)(c + jd) = ac - bd + j(bc + ad) $

In polar form $ z_{1}(z_{2}) = \rho_{1}e^{j\Theta_{1}}\rho_{2}e^{j\Theta{2}} = \rho_{1}\rho_{2}e^{j(\Theta_{1}+\Theta{2})} $

Division:

In rectangular form: $ \frac{z_{1}}{z_{2}} = \frac{a + jb}{c + jd} = \frac {(a + jb)(c - jd)}{c^2 + d^2} $

In polar form: $ \frac{z_{1}}{z_{2}} = \frac{\rho_{1}e^{j\Theta_{1}}}{\rho_{2}e^{j\Theta{2}}} = \frac {\rho_{1}}{\rho_{2}}e^{j(\Theta_{1}-\Theta{2})} $

Alumni Liaison

EISL lab graduate

Mu Qiao