Revision as of 12:17, 14 May 2008 by Jvaught (Talk)

Definition (left-sided)

A group $ \langle G, \cdot \rangle $ is a set G and a Binary Operation_Old Kiwi $ \cdot $ on G (closed over G by definition) such that the group axioms hold:

  1. Associativity: $ a\cdot(b\cdot c) = (a\cdot b)\cdot c $ $ \forall a,b,c \in G $
  2. Identity: $ \exists e\in G $ such that $ e\cdot a = a $ $ \forall a \in G $
  3. Inverse: $ \forall a\in G $ $ \exists a^{-1}\in G $ such that $ a^{-1}\cdot a = e $

Notation

Groups written additively use + to denote their Binary Operation_Old Kiwi, 0 to denote their identity, $ -a $ to denote the inverse of element $ a $, and $ na $ to denote $ a + a + \ldots + a $ ($ n $ terms).

Groups written multiplicatively use $ \cdot $ or juxtaposition to denote their Binary Operation_Old Kiwi, 1 to denote their identity, $ a^{-1} $ to denote the inverse of element $ a $, and $ a^n $ to denote $ a \cdot a \cdot \ldots \cdot a $ ($ n $ terms).

Theorems

Element commutes with inverse

Thm: $ \forall a\in G $ $ a\cdot a^{-1} = a^{-1}\cdot a = 1 $

Prf: Let $ a $ be an arbitrary element of $ G $. Since $ a^{-1}\in G $, it has an inverse $ (a^{-1})^{-1} $ in $ G $ such that $ (a^{-1})^{-1}\cdot a^{-1} = 1 $ by the inverse axiom. But $ 1\cdot a^{-1} = a^{-1} $ by the identity axiom, so substituting into the previous equation: $ (a^{-1})^{-1}\cdot (1\cdot a^{-1}) = 1 $. But by the inverse axiom, $ 1 = a^{-1}\cdot a $, so substituting again: $ (a^{-1})^{-1}((a^{-1}\cdot a)\cdot a^{-1}) = 1 $ and by associativity $ ((a^{-1})^{-1}\cdot a^{-1})\cdot(a\cdot a^{-1}) = 1 $. But $ ((a^{-1})^{-1}\cdot a^{-1}) = 1 $ and $ 1\cdot(a\cdot a^{-1}) = a\cdot a^{-1} $, so $ a\cdot a^{-1} = 1 $. Since $ a^{-1}\cdot a = 1 $ is given by the inverse axiom, $ a\cdot a^{-1} = a^{-1}\cdot a = 1 $.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett