Revision as of 18:24, 11 February 2009 by Mlo (Talk | contribs)


Starting with some $ \,\! X(f) $, we want to derive a mathematical expression for $ \,\! X(w) $


Though we already know that it's just some shift/scale version with period 2*pi, here is the math behind it.


We know $ \,\! X_s(f) = FsRep_{Fs}[X(f)] $ from the discussion of $ \,\!x_s(t) = comb_t(x(t)) $


From the notes, we also know the relationship between $ \,\! X(w) $ and $ \,\! X_s(f) $

  • $ \,\! X(w) = X_s((\frac{w}{2\pi})F_s) $

Rewriting $ \,\! X_s(f) $

  • $ \,\! X_s(f) = FsX(f)*\sum_{-\infty}^{\infty}\delta(f-F_sk) $

Substituting known relation

  • $ \,\! X(w) = FsX((\frac{w}{2\pi})F_s)*\sum_{-\infty}^{\infty}\delta((\frac{w}{2\pi})F_s-F_sk) $

Using LTI, rearrange the equation

  • $ \,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{w}{2\pi})F_s-F_sk) $

Re-arrange the delta function

  • $ \,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{F_s}{2\pi})(w-k2\pi)) $

Using delta properties, you can take out the $ (\frac{F_s}{2\pi}) $

  • $ \,\! X(w) =Fs(\frac{2\pi}{F_s}) \sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((w-k2\pi)) $

The $ F_s $ will cancel and employ sifting to get

  • $ \,\! X(w) =2\pi \sum_{-\infty}^{\infty}X((\frac{w-k2\pi}{2\pi})F_s) $

Now you can see how your X(f) is being scaled and shifted

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett