(New page: Category:ECE438Spring2009mboutin Starting with some <math>\,\! X(f)</math>, we want to derive a mathematical expression for <math>\,\! X(w)</math> Though we already know that it's j...)
 
Line 15: Line 15:
 
Rewriting <math>\,\! X_s(f)</math>
 
Rewriting <math>\,\! X_s(f)</math>
  
*<math>\,\! X_s(f) = X(f)*\sum_{-\infty}^{\infty}\delta(f-F_sk)</math>
+
*<math>\,\! X_s(f) = FsX(f)*\sum_{-\infty}^{\infty}\delta(f-F_sk)</math>
  
 
Substituting known relation  
 
Substituting known relation  
*<math>\,\! X(w) = X((\frac{w}{2\pi})F_s)*\sum_{-\infty}^{\infty}\delta((\frac{w}{2\pi})F_s-F_sk)</math>
+
*<math>\,\! X(w) = FsX((\frac{w}{2\pi})F_s)*\sum_{-\infty}^{\infty}\delta((\frac{w}{2\pi})F_s-F_sk)</math>
  
Using delta properties
+
Using LTI, rearrange the equation
*
+
*<math>\,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{w}{2\pi})F_s-F_sk)</math>
 +
 
 +
Re-arrange the delta function
 +
*<math>\,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{F_s}{2\pi})(w-k2\pi))</math>
 +
 
 +
Using delta properties, you can take out the <math>(\frac{F_s}{2\pi})</math>
 +
 
 +
*<math>\,\! X(w) =Fs(\frac{2\pi}{F_s}) \sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((w-k2\pi))</math>
 +
 
 +
The <math>F_s</math> will cancel and employ sifting to get
 +
*<math>\,\! X(w) =2\pi \sum_{-\infty}^{\infty}X((\frac{w-k2\pi}{2\pi})F_s)</math>

Revision as of 18:20, 11 February 2009


Starting with some $ \,\! X(f) $, we want to derive a mathematical expression for $ \,\! X(w) $

Though we already know that it's just some shift/scale version with period 2*pi, here is the math behind it.


We know $ \,\! X_s(f) = FsRep_{Fs}[X(f)] $ from the discussion of $ \,\!x_s(t) = comb_t(x(t)) $


From the notes, we also know the relationship between $ \,\! X(w) $ and $ \,\! X_s(f) $

  • $ \,\! X(w) = X_s((\frac{w}{2\pi})F_s) $

Rewriting $ \,\! X_s(f) $

  • $ \,\! X_s(f) = FsX(f)*\sum_{-\infty}^{\infty}\delta(f-F_sk) $

Substituting known relation

  • $ \,\! X(w) = FsX((\frac{w}{2\pi})F_s)*\sum_{-\infty}^{\infty}\delta((\frac{w}{2\pi})F_s-F_sk) $

Using LTI, rearrange the equation

  • $ \,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{w}{2\pi})F_s-F_sk) $

Re-arrange the delta function

  • $ \,\! X(w) = Fs\sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((\frac{F_s}{2\pi})(w-k2\pi)) $

Using delta properties, you can take out the $ (\frac{F_s}{2\pi}) $

  • $ \,\! X(w) =Fs(\frac{2\pi}{F_s}) \sum_{-\infty}^{\infty}X((\frac{w}{2\pi})F_s)*\delta((w-k2\pi)) $

The $ F_s $ will cancel and employ sifting to get

  • $ \,\! X(w) =2\pi \sum_{-\infty}^{\infty}X((\frac{w-k2\pi}{2\pi})F_s) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett