Line 1: Line 1:
 
----
 
----
  
<br>==Answer==  
+
== Answer ==
  
&lt;math&gt; a_n = \frac{1}{T}\int_{0}^{T}x(t)e^{-j\frac{2\pi}{T}n t} dt = \int_{0}^{1}x(t)e^{-j2\pi n t}&lt;/math&gt;
+
<math> a_n = \frac{1}{T}\int_{0}^{T}x(t)e^{-j\frac{2\pi}{T}n t} dt = \int_{0}^{1}x(t)e^{-j2\pi n t}</math>
  
Substitute &lt;math&gt;a=\pi, \;\; b=-j2\pi n&lt;/math&gt;
+
Substitute <math>a=\pi, \;\; b=-j2\pi n</math>
  
&lt;math&gt;<br>\begin{align}<br>a_n &amp;= \int_{0}^{1}\text{sin}(at)e^{bt}dt = \left[\frac{1}{b}\text{sin}(at)e^{bt}\right]^{1}_{0} - \int_{0}^{1}frac{a\text{cos}(at)}{b}e^{bt}dt \\<br>&amp;= \left(\frac{e^b}{b}\text{sin}(a)\right) - \frac{a}{b}\left(\left[\frac{\text{cos}(at)}{b}e^{bt}\right]^{1}_{0} - \int_{0}^{1}\frac{-a\text{sin}(at)}{b}e^{bt}dt\right) \\<br>&amp;= \left(\frac{e^b}{b}\text{sin}(a)\right) - \frac{a}{b} \left( \left( \frac{\text{cos}(a)}{b}e^{b}-\frac{1}{b}\right) + \frac{a}{b}\int_{0}^{1}\text{sin}(at)e^{bt}dt \right) \\<br>&amp;= \frac{e^b}{a}\text{sin}(a)-\frac{a\text{cos}(a)}{b^2}e^b + \frac{a}{b^2} - \frac{a^2}{b^2}\int_{0}^{1}\text{sin}(at)e^{bt}dt \\<br>\end{align}<br>&lt;/math&gt;
+
<math>
 +
\begin{align}
 +
a_n &= \int_{0}^{1}\text{sin}(at)e^{bt}dt = \left[\frac{1}{b}\text{sin}(at)e^{bt}\right]^{1}_{0} - \int_{0}^{1}frac{a\text{cos}(at)}{b}e^{bt}dt \\
 +
&= \left(\frac{e^b}{b}\text{sin}(a)\right) - \frac{a}{b}\left(\left[\frac{\text{cos}(at)}{b}e^{bt}\right]^{1}_{0} - \int_{0}^{1}\frac{-a\text{sin}(at)}{b}e^{bt}dt\right) \\
 +
&= \left(\frac{e^b}{b}\text{sin}(a)\right) - \frac{a}{b} \left( \left( \frac{\text{cos}(a)}{b}e^{b}-\frac{1}{b}\right) + \frac{a}{b}\int_{0}^{1}\text{sin}(at)e^{bt}dt \right) \\
 +
&= \frac{e^b}{a}\text{sin}(a)-\frac{a\text{cos}(a)}{b^2}e^b + \frac{a}{b^2} - \frac{a^2}{b^2}\int_{0}^{1}\text{sin}(at)e^{bt}dt \\
 +
\end{align}
 +
</math>
  
As you can see &lt;math&gt;\int_{0}^{1}\text{sin}(at)e^{bt}dt&lt;/math&gt; term repeats, therefore it needs to be subtracted to both sides.  
+
As you can see <math>\int_{0}^{1}\text{sin}(at)e^{bt}dt</math> term repeats, therefore it needs to be subtracted to both sides.  
  
Then, &lt;math&gt;a_n&lt;/math&gt; can be calculated.  
+
Then, <span class="texhtml">''a''<sub>''n''</sub></span> can be calculated.  
  
&lt;math&gt;<br>\frac{e^{-j2\pi n}}{-j2\pi n}\text{sin}\pi + \frac{\pi \text{cos}\pi}{4 \pi^2 n^2}e^{-j2\pi n} - \frac{\pi}{4 \pi^2 n^2} = \left(1-\frac{\pi^2}{4\pi^2 n^2}\right) \int_{0}^{1}\text{sin}(\pi t) e^{-j2\pi n t}dt = \left(1-\frac{\pi^2}{4\pi^2 n^2}\right) a_n<br>&lt;/math&gt;
+
<math>
 +
\frac{e^{-j2\pi n}}{-j2\pi n}\text{sin}\pi + \frac{\pi \text{cos}\pi}{4 \pi^2 n^2}e^{-j2\pi n} - \frac{\pi}{4 \pi^2 n^2} = \left(1-\frac{\pi^2}{4\pi^2 n^2}\right) \int_{0}^{1}\text{sin}(\pi t) e^{-j2\pi n t}dt = \left(1-\frac{\pi^2}{4\pi^2 n^2}\right) a_n
 +
</math>
  
From this equation, &lt;math&gt;\frac{e^{-j2\pi n t}}{-j2\pi n}\text{sin}\pi=0&lt;/math&gt; because of &lt;math&gt;\text{sin}\pi&lt;/math&gt;, and &lt;math&gt;\frac{\pi \text{cos}\pi}{4 \pi^2 n^2}e^{-j2\pi n} = \frac{-\pi}{4\pi^2 n^2}&lt;/math&gt;
+
From this equation, <math>\frac{e^{-j2\pi n t}}{-j2\pi n}\text{sin}\pi=0</math> because of <span class="texhtml">sinπ</span>, and <math>\frac{\pi \text{cos}\pi}{4 \pi^2 n^2}e^{-j2\pi n} = \frac{-\pi}{4\pi^2 n^2}</math>
  
There are two terms of &lt;math&gt;-\frac{\pi}{4\pi^2 n^2}&lt;/math&gt;.  
+
There are two terms of <math>-\frac{\pi}{4\pi^2 n^2}</math>.  
  
<br>&lt;math&gt;a_n=\frac{-\frac{2\pi}{4\pi^2 n^2}}{1-\frac{\pi^2}{4\pi^2 n^2}} = -\frac{2\pi}{4\pi^2 n^2 - \pi^2} = \frac{2}{\pi(1-4n^2)}&lt;/math&gt;<br>
+
<br><math>a_n=\frac{-\frac{2\pi}{4\pi^2 n^2}}{1-\frac{\pi^2}{4\pi^2 n^2}} = -\frac{2\pi}{4\pi^2 n^2 - \pi^2} = \frac{2}{\pi(1-4n^2)}</math>

Revision as of 09:36, 28 September 2010


Answer

$ a_n = \frac{1}{T}\int_{0}^{T}x(t)e^{-j\frac{2\pi}{T}n t} dt = \int_{0}^{1}x(t)e^{-j2\pi n t} $

Substitute $ a=\pi, \;\; b=-j2\pi n $

$ \begin{align} a_n &= \int_{0}^{1}\text{sin}(at)e^{bt}dt = \left[\frac{1}{b}\text{sin}(at)e^{bt}\right]^{1}_{0} - \int_{0}^{1}frac{a\text{cos}(at)}{b}e^{bt}dt \\ &= \left(\frac{e^b}{b}\text{sin}(a)\right) - \frac{a}{b}\left(\left[\frac{\text{cos}(at)}{b}e^{bt}\right]^{1}_{0} - \int_{0}^{1}\frac{-a\text{sin}(at)}{b}e^{bt}dt\right) \\ &= \left(\frac{e^b}{b}\text{sin}(a)\right) - \frac{a}{b} \left( \left( \frac{\text{cos}(a)}{b}e^{b}-\frac{1}{b}\right) + \frac{a}{b}\int_{0}^{1}\text{sin}(at)e^{bt}dt \right) \\ &= \frac{e^b}{a}\text{sin}(a)-\frac{a\text{cos}(a)}{b^2}e^b + \frac{a}{b^2} - \frac{a^2}{b^2}\int_{0}^{1}\text{sin}(at)e^{bt}dt \\ \end{align} $

As you can see $ \int_{0}^{1}\text{sin}(at)e^{bt}dt $ term repeats, therefore it needs to be subtracted to both sides.

Then, an can be calculated.

$ \frac{e^{-j2\pi n}}{-j2\pi n}\text{sin}\pi + \frac{\pi \text{cos}\pi}{4 \pi^2 n^2}e^{-j2\pi n} - \frac{\pi}{4 \pi^2 n^2} = \left(1-\frac{\pi^2}{4\pi^2 n^2}\right) \int_{0}^{1}\text{sin}(\pi t) e^{-j2\pi n t}dt = \left(1-\frac{\pi^2}{4\pi^2 n^2}\right) a_n $

From this equation, $ \frac{e^{-j2\pi n t}}{-j2\pi n}\text{sin}\pi=0 $ because of sinπ, and $ \frac{\pi \text{cos}\pi}{4 \pi^2 n^2}e^{-j2\pi n} = \frac{-\pi}{4\pi^2 n^2} $

There are two terms of $ -\frac{\pi}{4\pi^2 n^2} $.


$ a_n=\frac{-\frac{2\pi}{4\pi^2 n^2}}{1-\frac{\pi^2}{4\pi^2 n^2}} = -\frac{2\pi}{4\pi^2 n^2 - \pi^2} = \frac{2}{\pi(1-4n^2)} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn