Line 39: Line 39:
 
:Hint: Euler's formula is: <math class="inline">\sin(\theta)=\frac{1}{2j}e^{j\theta}-\frac{1}{2j}e^{-j\theta}</math>
 
:Hint: Euler's formula is: <math class="inline">\sin(\theta)=\frac{1}{2j}e^{j\theta}-\frac{1}{2j}e^{-j\theta}</math>
 
===Answer 2===
 
===Answer 2===
Write it here.
+
<math> x(t)=\sin(3 \pi t + \frac{\pi}{2}) = \frac{e^{j (3 \pi t + \frac{\pi}{2}) } - e^{-j(3 \pi t + \frac{\pi}{2})}}{2j}  </math>
 +
 
 +
<math> = \frac{1}{2j}e^{j3\pi t}e^{j\frac{\pi}{2}} - \frac{1}{2j}e^{-j3\pi t}e^{-j\frac{\pi}{2}}</math>
 +
 
 +
Since:
 +
 
 +
*<math> e^{j\frac{\pi}{2}} = j</math>
 +
*<math> e^{-j\frac{\pi}{2}} = -j</math>
 +
 
 +
We have:
 +
<math> \frac{1}{2}e^{j3t\pi} + \frac{1}{2}e^{-j3t\pi} \rightarrow  \frac{1}{2}e^{(1)j3t\pi} + \frac{1}{2}e^{(-1)j3t\pi}</math>
 +
 
 +
<math> a_{-1} = \frac{1}{2}, a_{1} = \frac{1}{2}, a_{k} = 0 \text{ for }k \neq -1,1 </math>
 
===Answer 3===
 
===Answer 3===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]

Revision as of 17:57, 15 February 2011

Practice Question on Computing the Fourier Series coefficients of a sine wave

Obtain the Fourier series coefficients of the CT signal

$ x(t) = \sin \left(3\pi t + \frac{\pi}{2} \right) . \ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

for $ sin(t) $, the coefficients are $ a_1=\frac{1}{2j},a_{-1}=\frac{-1}{2j}, a_k=0 \mbox{ for }k\ne 1,-1 $

Time shift property: $ x(t-t_0) \to e^{-jkw_0t_0}a_k $

Thus with $ w_0=3\pi\, $ and $ t_0=\frac{-\pi}{2} $,

$ a_1=\frac{e^{j 3 \pi \frac{\pi}{2}}}{2j},a_{-1}=\frac{-e^{-j 3 \pi \frac{\pi}{2}}}{2j}, a_k=0 \mbox{ for }k\ne 1,-1 $

Is that right? I'm not sure about the time shift property.

--Cmcmican 21:09, 7 February 2011 (UTC)

Instructor's comment: we will see the time shifting property later. Can you solve the problem without it? Perhaps you could write sin(u) as a sum of two exponentials, and then replace u by what is inside the sine. You should be able to factor out the phase as a separate exponential (a constant) in front of a complex exponential function. -pm

So like this?

$ sin(t)=\frac{1}{2j}e^{jkw_0t}-\frac{1}{2j}e^{-jkw_0t} $

$ x(t)=\frac{1}{2j}e^{jk3\pi(t+\frac{\pi}{2})}-\frac{1}{2j}e^{-jk3\pi(t+\frac{\pi}{2})} $

therefore,

$ a_1=\frac{e^{j 3 \pi \frac{\pi}{2}}}{2j},a_{-1}=\frac{-e^{-j 3 \pi \frac{\pi}{2}}}{2j}, a_k=0 \mbox{ for }k\ne 1,-1 $

--Cmcmican 08:23, 8 February 2011 (UTC)

TA's comment: I think you still have a mistake in your answer. As Prof. Boutin noted above, the phase should factor out.
Hint: Euler's formula is: $ \sin(\theta)=\frac{1}{2j}e^{j\theta}-\frac{1}{2j}e^{-j\theta} $

Answer 2

$ x(t)=\sin(3 \pi t + \frac{\pi}{2}) = \frac{e^{j (3 \pi t + \frac{\pi}{2}) } - e^{-j(3 \pi t + \frac{\pi}{2})}}{2j} $

$ = \frac{1}{2j}e^{j3\pi t}e^{j\frac{\pi}{2}} - \frac{1}{2j}e^{-j3\pi t}e^{-j\frac{\pi}{2}} $

Since:

  • $ e^{j\frac{\pi}{2}} = j $
  • $ e^{-j\frac{\pi}{2}} = -j $

We have: $ \frac{1}{2}e^{j3t\pi} + \frac{1}{2}e^{-j3t\pi} \rightarrow \frac{1}{2}e^{(1)j3t\pi} + \frac{1}{2}e^{(-1)j3t\pi} $

$ a_{-1} = \frac{1}{2}, a_{1} = \frac{1}{2}, a_{k} = 0 \text{ for }k \neq -1,1 $

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang