Line 17: Line 17:
 
    det(A) = (6)(4)(1) = 24          The matrix is invertible  
 
    det(A) = (6)(4)(1) = 24          The matrix is invertible  
  
8. For any 3x3 matrix A with column vectors '''''u, v, w''''', determinant of A is '''''u · v'''''x'''''w'''''  
+
8. For any 3x3 matrix A with column vectors '''''u, v, w''''', determinant of A is '''''u ·'''''('''''v '''''x '''''w''''')
  
 
   det(A) = [1  1  3] · ([2  1  2] x [3  1  1])  
 
   det(A) = [1  1  3] · ([2  1  2] x [3  1  1])  
Line 23: Line 23:
 
               = [1  1  3] · [-1  4  -1]  
 
               = [1  1  3] · [-1  4  -1]  
  
               = 0               The matrix is not invertible
+
               = 0               The matrix is not invertible  
  
41. Remember, det(A) =&nbsp;Σ (sgn P)(prod P). In this matrix, two nonzero patterns exist: (2 -&gt; 3 -&gt; 1 -&gt; 2 -&gt; 4), with 5 inversions, and (2 -&gt; 3 -&gt; 3 -&gt; 2 -&gt; 2), with 8 inversions.<br>
+
41. Remember, det(A) =&nbsp;Σ (sgn P)(prod P). In this matrix, two nonzero patterns exist: (2 -&gt; 3 -&gt; 1 -&gt; 2 -&gt; 4), with 5 inversions, and (2 -&gt; 3 -&gt; 3 -&gt; 2 -&gt; 2), with 8 inversions.<br>  
  
&nbsp; &nbsp; &nbsp; &nbsp;det(A) = (-1)<sup>5</sup>(2 * 3 * 1 * 2 * 4) + (-1)<sup>8</sup>(2 * 3 * 3 * 2 * 2)
+
&nbsp; &nbsp; &nbsp; &nbsp;det(A) = (-1)<sup>5</sup>(2 * 3 * 1 * 2 * 4) + (-1)<sup>8</sup>(2 * 3 * 3 * 2 * 2)  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= (-48) + (72) = 24
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= (-48) + (72) = 24  
  
 +
<br>
  
 +
<u>6.3</u>
  
<u>6.3</u>
+
<u></u>22. Cramer's Rule states that in the system A'''x''' = '''b''' , where A is an invertible n x n matrix, the components x<sub>i</sub> of the solution vector are x<sub>i</sub> = det(A'''<sub>b</sub>'''<sub>,i</sub>)/det(A), where&nbsp;A'''<sub>b</sub>'''<sub>,i</sub> is the matrix obtained by replacing the ith column of A with '''b'''
  
<u></u>22. Cramer's Rule states that in the system A'''x''' = '''b''' , where A is an invertible n x n matrix, the components x<sub>i</sub> of the solution vector are x<sub>i</sub> = det(A'''<sub>b</sub>'''<sub>,i</sub>)/det(A), where&nbsp;A'''<sub>b</sub>'''<sub>,i</sub> is the matrix obtained by replacing the ith column of A with '''b'''
+
x<sub>1</sub> = det([[1 &nbsp;7][3 11]])/det(A) = (-10) / (5) = -2
  
x<sub>1</sub> = det([[1 &nbsp;7][3 11]])/det(A) = (-10) / (5) = -2
+
x<sub>2</sub> = det([[3 &nbsp;1][4 &nbsp;3]])/det(A) = (5) / (5) = 1
  
x<sub>2</sub> = det([[3 &nbsp;1][4 &nbsp;3]])/det(A) = (5) / (5) = 1
+
'''x''' = [-2 &nbsp;1]  
  
'''x''' = [-2 &nbsp;1]
+
 
 +
 
 +
<u>'''Chapter 7: Eigenvalues and Eigenvectors'''</u>
 +
 
 +
<u</u><u>7.1</u>
 +
 
 +
<u</u>16. Since this transformation takes a vector and rotates it 180 degrees (reflects it about the origin), -1 is the only eigenvalue, and all vectors in R<sup>2</sup> are eigenvectors.

Revision as of 06:36, 6 May 2011

 Chapter 6: Determinants

I will show several problems where I find the determinant, illustrating the several methods of doing this.

6.1

2. For any 2x2 matrix A, det(A) = ad - bc, so det(A) = (2)(5) - (3)(4) = -2 . Since this is not 0, A is invertible.

5. Let's use Laplace Expansion and expand across the first column. Remember to alternate signs.

     det(A) = (1)(2)(det(A11) + (-1)(5)(det(A12) + (1)(7)(det(A13)

                 = (2 * 55) + (-5 * 0) + (7 * 0) = 110          The matrix is invertible

6. Determinant of a upper- or lower-triangular matrix is simply the product of the diagonal entries.

    det(A) = (6)(4)(1) = 24          The matrix is invertible

8. For any 3x3 matrix A with column vectors u, v, w, determinant of A is u ·(w)

   det(A) = [1  1  3] · ([2  1  2] x [3  1  1])

               = [1  1  3] · [-1  4  -1]

               = 0               The matrix is not invertible

41. Remember, det(A) = Σ (sgn P)(prod P). In this matrix, two nonzero patterns exist: (2 -> 3 -> 1 -> 2 -> 4), with 5 inversions, and (2 -> 3 -> 3 -> 2 -> 2), with 8 inversions.

       det(A) = (-1)5(2 * 3 * 1 * 2 * 4) + (-1)8(2 * 3 * 3 * 2 * 2)

                   = (-48) + (72) = 24


6.3

22. Cramer's Rule states that in the system Ax = b , where A is an invertible n x n matrix, the components xi of the solution vector are xi = det(Ab,i)/det(A), where Ab,i is the matrix obtained by replacing the ith column of A with b

x1 = det([[1  7][3 11]])/det(A) = (-10) / (5) = -2

x2 = det([[3  1][4  3]])/det(A) = (5) / (5) = 1

x = [-2  1]


Chapter 7: Eigenvalues and Eigenvectors

<u</u>7.1

<u</u>16. Since this transformation takes a vector and rotates it 180 degrees (reflects it about the origin), -1 is the only eigenvalue, and all vectors in R2 are eigenvectors.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett