(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
Defining equation for the DFT and assume that N is even, so we have<br>  
+
Defining equation for the N point DFT of the signal x(n) , so we have<br>  
  
<math>X(k) = \sum_{n=0}^{N-1} x(n)e^{-j{\frac{2{\pi}kn}{N}}}</math><br><br>
+
<math>X(k) = \sum_{n=0}^{N-1} x(n)e^{-j{\frac{2{\pi}kn}{N}}}</math><br>  
 +
 
 +
We denote
 +
 
 +
<span class="texhtml">''X''(''k'') = ''DFT''<sub>''N''</sub>[''X''(''n'')]</span>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <span class="texhtml">* Here we assume that N is even</span>
 +
 
 +
<br>
 +
 
 +
In the preceding steps, we will show how Radix-2 FFT Alorithm for computation o the DFT based on the divide-and-conquer approach.
 +
 
 +
<u>Step 1</u>:&nbsp;Deine two new N/2 points from th original N point sequency x(n)
 +
 
 +
<span class="texhtml"><sub></sub></span><span class="texhtml">''x''<sub>0</sub>(''n'') = ''x''(2''n'')</span>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; even subset of x(n)<br>
 +
 
 +
<span class="texhtml">''x''<sub>1</sub>(''n'') = ''x''(2''n'' + 1) &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; odd subset of x(n)</span>
 +
 
 +
<span class="texhtml">* where n&nbsp; = 0,1,2 .... N/2-1</span>
 +
 
 +
<br>
 +
 
 +
<u></u><u>Step 2:</u> Perform an N/2 point DFT on each subset
 +
 
 +
<math>X_0 (k)=DFT_\frac{N}{2}[x_0 (n)]</math><br>
 +
 
 +
<math>X_1 (k)=DFT_\frac{N}{2}[x_1 (n)]</math><br>
 +
 
 +
Then&nbsp; we have<br>
 +
 
 +
<span class="texhtml">''X''(''k'') = ''X''<sub>0</sub>(''k'') + ''X''<sub>1</sub>(''k'')</span>
 +
 
 +
<br>
 +
 
 +
<span class="texhtml">Let n = 2m (even) and n = 2m+1&nbsp;(odd)</span>
 +
 
 +
<math>{X(k) = \sum_{m=0}^{\frac{N}{2}-1} x(2m)e^{-j{\frac{2{\pi}k}{N}}(2m)}}+
 +
{          \sum_{m=0}^{\frac{N}{2}-1} x(2m+1)e^{-j{\frac{2{\pi}k}{N}}(2m+1)}}</math> <math>{X(k) = \sum_{m=0}^{\frac{N}{2}-1} x(2m)e^{-j{\frac{2{\pi}k}{N}}(2m)}}+
 +
{          {e^{-j{\frac{2{\pi}k}{N}}}}{\sum_{m=0}^{\frac{N}{2}-1} x(2m+1)e^{-j{\frac{2{\pi}k}{N}}(2m+1)}}}</math>
 +
 
 +
<math>X(k)= X_0(k) + e^{-j{\frac{2{\pi}k}{N}}}X_1(k)</math><br> <br>
 +
 
 +
<u>Step 3:</u> Define twiddle factor and find periodic version of X(k)<br>
 +
 
 +
Notice: each N/2 point DFT is periodic with period N/2
 +
 
 +
So we have
 +
 
 +
<math>X(k+ \frac{N}{2})= X_0(k+\frac{N}{2}) + e^{-j{\frac{2{\pi}}{N}}{(k+\frac{N}{2})}}X_1(k+\frac{N}{2})</math>
 +
 
 +
<math>X(k+ \frac{N}{2})= X_0(k+\frac{N}{2}) + e^{-j{\frac{2{\pi}k}{N}}}(-1)X_1(k+\frac{N}{2})</math>
 +
 
 +
Let's define ''twiddle factors''<br>
 +
 
 +
<u><math>W_N^k = e^{-j{\frac{2{\pi}k}{N}}}</math></u>
 +
 
 +
Then we can get the following expression
 +
 
 +
<math>X(k+{\frac{N}{2}})= X_0(k) - e^{-j{\frac{2{\pi}k}{N}}}X_1(k)</math>
 +
 
 +
<br>
 +
 
 +
So we derive the a simple expression for the N point DFT
 +
 
 +
<math>X(k)= X_0(k) + W_N^k X_1(K)</math>
 +
 
 +
<math>X(k+{\frac{N}{2}})= X_0(k)- W_N^k X_1(K)</math><br>
 +
 
 +
*&nbsp;For k = 0,1,2 ... N/2-1<br>
 +
 
 +
These two expressions interpretate the N point DFT by using the "divide -and - conquer DFT"

Latest revision as of 19:09, 7 November 2012

Defining equation for the N point DFT of the signal x(n) , so we have

$ X(k) = \sum_{n=0}^{N-1} x(n)e^{-j{\frac{2{\pi}kn}{N}}} $

We denote

X(k) = DFTN[X(n)]               * Here we assume that N is even


In the preceding steps, we will show how Radix-2 FFT Alorithm for computation o the DFT based on the divide-and-conquer approach.

Step 1: Deine two new N/2 points from th original N point sequency x(n)

x0(n) = x(2n)                even subset of x(n)

x1(n) = x(2n + 1)            odd subset of x(n)

* where n  = 0,1,2 .... N/2-1


Step 2: Perform an N/2 point DFT on each subset

$ X_0 (k)=DFT_\frac{N}{2}[x_0 (n)] $

$ X_1 (k)=DFT_\frac{N}{2}[x_1 (n)] $

Then  we have

X(k) = X0(k) + X1(k)


Let n = 2m (even) and n = 2m+1 (odd)

$ {X(k) = \sum_{m=0}^{\frac{N}{2}-1} x(2m)e^{-j{\frac{2{\pi}k}{N}}(2m)}}+ { \sum_{m=0}^{\frac{N}{2}-1} x(2m+1)e^{-j{\frac{2{\pi}k}{N}}(2m+1)}} $ $ {X(k) = \sum_{m=0}^{\frac{N}{2}-1} x(2m)e^{-j{\frac{2{\pi}k}{N}}(2m)}}+ { {e^{-j{\frac{2{\pi}k}{N}}}}{\sum_{m=0}^{\frac{N}{2}-1} x(2m+1)e^{-j{\frac{2{\pi}k}{N}}(2m+1)}}} $

$ X(k)= X_0(k) + e^{-j{\frac{2{\pi}k}{N}}}X_1(k) $

Step 3: Define twiddle factor and find periodic version of X(k)

Notice: each N/2 point DFT is periodic with period N/2

So we have

$ X(k+ \frac{N}{2})= X_0(k+\frac{N}{2}) + e^{-j{\frac{2{\pi}}{N}}{(k+\frac{N}{2})}}X_1(k+\frac{N}{2}) $

$ X(k+ \frac{N}{2})= X_0(k+\frac{N}{2}) + e^{-j{\frac{2{\pi}k}{N}}}(-1)X_1(k+\frac{N}{2}) $

Let's define twiddle factors

$ W_N^k = e^{-j{\frac{2{\pi}k}{N}}} $

Then we can get the following expression

$ X(k+{\frac{N}{2}})= X_0(k) - e^{-j{\frac{2{\pi}k}{N}}}X_1(k) $


So we derive the a simple expression for the N point DFT

$ X(k)= X_0(k) + W_N^k X_1(K) $

$ X(k+{\frac{N}{2}})= X_0(k)- W_N^k X_1(K) $

  •  For k = 0,1,2 ... N/2-1

These two expressions interpretate the N point DFT by using the "divide -and - conquer DFT"

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva