(New page: {| |- | align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform | <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\mathcal{F}^{-1}(\mathcal{X}(2\pi f))=\frac{1}{2\pi}...)
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
{|
+
=How to obtain the Inverse DT Fourier Transform formula in terms of f in hertz (from the formula in terms of <math>\omega</math>) =
|-
+
 
| align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform
+
Recall:
| <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\mathcal{F}^{-1}(\mathcal{X}(2\pi f))=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{i2\pi ft} d2\pi f= \int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \,</math>
+
 
|}
+
<math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\,</math>
 +
 
 +
To obtain X(f), use the substitution
 +
 
 +
<math>\omega= 2 \pi f </math>.
 +
 
 +
More specifically
 +
 
 +
<div align="left" style="padding-left: 0em;">
 +
<math>
 +
\begin{align}
 +
x(t) &=\mathcal{F}^{-1}(\mathcal{X}(\omega)) \\
 +
&=\mathcal{F}^{-1}(\mathcal{X}(2\pi f)) \\
 +
&=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{i2\pi ft} d2\pi f \\
 +
&= \int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df  
 +
\end{align}
 +
</math>
 +
</div>
 +
 
 +
----
 +
[[ECE438_HW1_Solution|Back to Table]]

Latest revision as of 10:58, 15 September 2010

How to obtain the Inverse DT Fourier Transform formula in terms of f in hertz (from the formula in terms of $ \omega $)

Recall:

$ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\, $

To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ \begin{align} x(t) &=\mathcal{F}^{-1}(\mathcal{X}(\omega)) \\ &=\mathcal{F}^{-1}(\mathcal{X}(2\pi f)) \\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{i2\pi ft} d2\pi f \\ &= \int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \end{align} $


Back to Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett