(New page: {| | align="left" style="padding-left: 0em;" | CTFT of a impulse train |- | <math> X(f)=\mathcal{X}(2\pi f)=\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(2\pi f-\frac{2\pi k}{T})=\frac{1...)
 
 
Line 1: Line 1:
{|
+
=How to obtain the CTFT of a impulse train in terms of f in hertz (from the formula in terms of <math>\omega</math>) =
| align="left" style="padding-left: 0em;" | CTFT of a impulse train  
+
 
|-  
+
Recall:
| <math> X(f)=\mathcal{X}(2\pi f)=\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(2\pi f-\frac{2\pi k}{T})=\frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T})\ </math>  
+
 
|-
+
<math>x(t)=\sum^{\infty}_{n=-\infty} \delta(t-nT) </math>
| <math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math>
+
 
|}
+
<math>\mathcal{X}(\omega)=\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) </math>
 +
 
 +
To obtain X(f), use the substitution
 +
 
 +
<math>\omega= 2 \pi f </math>.
 +
 
 +
More specifically
 +
 
 +
<math>
 +
\begin{align}
 +
X(f) &=\mathcal{X}(2\pi f) \\
 +
&=\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(2\pi f-\frac{2\pi k}{T}) \\
 +
&=\frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T})
 +
\end{align}
 +
</math>
 +
 
 +
<math>Since\ k\delta (kt)=\delta (t),\forall k\ne 0</math>
 +
 
 +
----
 +
[[ECE438_HW1_Solution|Back to Table]]

Latest revision as of 12:06, 15 September 2010

How to obtain the CTFT of a impulse train in terms of f in hertz (from the formula in terms of $ \omega $)

Recall:

$ x(t)=\sum^{\infty}_{n=-\infty} \delta(t-nT) $

$ \mathcal{X}(\omega)=\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) $

To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ \begin{align} X(f) &=\mathcal{X}(2\pi f) \\ &=\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(2\pi f-\frac{2\pi k}{T}) \\ &=\frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T}) \end{align} $

$ Since\ k\delta (kt)=\delta (t),\forall k\ne 0 $


Back to Table

Alumni Liaison

EISL lab graduate

Mu Qiao