(New page: {| | align="left" style="padding-left: 0em;" | multiplication property |- | <math> \mathcal{U}(\omega)=\mathcal{X}(\omega)\mathcal{Y}(\omega) \ </math> |- | <math> U(f)=X(f)Y(f) \ </math>...)
 
Line 1: Line 1:
 
{|
 
{|
| align="left" style="padding-left: 0em;" | multiplication property
+
| align="left" style="padding-left: 0em;" | convolution property
 
|-  
 
|-  
 
| <math> \mathcal{U}(\omega)=\mathcal{X}(\omega)\mathcal{Y}(\omega) \ </math>
 
| <math> \mathcal{U}(\omega)=\mathcal{X}(\omega)\mathcal{Y}(\omega) \ </math>

Revision as of 20:32, 9 September 2010

convolution property
$ \mathcal{U}(\omega)=\mathcal{X}(\omega)\mathcal{Y}(\omega) \ $
$ U(f)=X(f)Y(f) \ $

$ \begin{align} U(f) &= \mathcal{U}(2\pi f) \\ &=\mathcal{X}(2\pi f)\mathcal{Y}(2\pi f) \\ &= X(f)Y(f) \end{align} $

$ Since\ X(\alpha)=\mathcal{X}(2\pi \alpha),Y(\alpha)=\mathcal{Y}(2\pi \alpha) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett