Line 6: Line 6:
  
 
So <math>f(x)= f(0) \  \forall x\in[0,a]</math> and <math>f(x)= f(0)-1 \ \forall x\in(a,1]</math>
 
So <math>f(x)= f(0) \  \forall x\in[0,a]</math> and <math>f(x)= f(0)-1 \ \forall x\in(a,1]</math>
 +
 +
<math>\int_[0,1]f=af(0) + (1-a)(f(0)-1)</math>

Revision as of 10:35, 22 July 2008

From the identity $ f(0)-(V_{0}^{x})^{1/2} = f(x) $ $ \forall x\in[0,1] $ we notice that $ V $ is a positive and increasing function, therefore, $ f $ is decreasing. Hence $ f(x)-f(0)=-V_{0}^{x}) $.

We then have $ V_{0}^{x}=(V_{0}^{x})^{2} $

It means that there is a point $ a $ in $ [0,1] $ such that $ V $ jumps from $ 0 $ to $ 1 $ right after the point. (It has to occur like that in order to fulfill the identity.)

So $ f(x)= f(0) \ \forall x\in[0,a] $ and $ f(x)= f(0)-1 \ \forall x\in(a,1] $

$ \int_[0,1]f=af(0) + (1-a)(f(0)-1) $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009