Revision as of 14:49, 8 July 2008 by Wardbc (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

3a)

Suppose that there is such an $ f $. Then we may choose $ N $ large enough such that $ m(\{x:f^*<f\}\cap[-N,N])>0 $. Call this set $ A $.

Let $ E_n=\{ x\in A:|f(x)|\in [n,n+1)\} $. Then $ \exists \ k $ such that $ m(E_k)>0 $.

Now, $ f $ is bounded on $ E_k $, and $ E_k $ has finite measure, so $ f(x) \chi_{E_k}(x) $ is integrable over $ \mathbb{R} $.

So by Lebesgue's Differentiation Theorem, $ f(x)\chi_{E_k}(x)\leq (f(x)\chi_{E_k}(x))^* $ for a.e. $ x\in E_k $

But, for every $ x \in E_k, x \in A \Rightarrow, f^*(x)<f(x)=f(x)\chi_{E_k}(x) $.

Thus, $ f^*(x)<(f(x)\chi_{E_k}(x))^* a.e $.

But, for any $ x $, and any $ Q $ centered at $ x $, $ \frac{\int_Q |f(x)|}{m(Q)}\geq \frac{\int_Q |f(x)|\chi_{E_k}(x)}{m(Q)}. \Rightarrow f^*(x)\geq (f(x)\chi_{E_k}(x))^* $ (taking the sup of both sides over all such $ Q $).

But $ m(E_k)>0 $, so this is a contradiction.

So $ \not\exist $ such an $ f $.

b)

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett