Line 33: Line 33:
 
: <math>  \cos wt =  \frac{e^{j w}}{2} +  \frac{e^{-j w}}{2}                  \,\!</math>
 
: <math>  \cos wt =  \frac{e^{j w}}{2} +  \frac{e^{-j w}}{2}                  \,\!</math>
 
and
 
and
: <math>  \sin wt =  \frac{e^{j w}}{2} -  \frac{e^{-j w}}{2}                  \,\!</math>
+
: <math>  \sin wt =  \frac{e^{j w}}{2j} -  \frac{e^{-j w}}{2j}                  \,\!</math>
 
--[[User:Freya|Freya]] 15:04, 20 July 2009 (UTC)
 
--[[User:Freya|Freya]] 15:04, 20 July 2009 (UTC)
  

Revision as of 11:10, 20 July 2009

Adam Frey's Euler Identity Summary

The identity is a special case of Euler's formula from complex analysis, which states that where j = i = $ \sqrt{-1} $

$ e^{jx} = \cos x + j \sin x \,\! $

for any real number x. (Note that sine and cosine should be in radians)

In particular,

$ e^{j \pi} = \cos \pi + j \sin \pi.\,\! $

We know from trig identities that:

$ \cos \pi = -1 \, \! $

and

$ \sin \pi = 0,\,\! $


which results in

$ e^{j \pi} = -1,\,\! $

which gives the identity

$ e^{j \pi} +1 = 0.\,\! $


Also useful is the relationship in splitting sine and cosine is where

$ \cos wt = \frac{e^{j w}}{2} + \frac{e^{-j w}}{2} \,\! $

and

$ \sin wt = \frac{e^{j w}}{2j} - \frac{e^{-j w}}{2j} \,\! $

--Freya 15:04, 20 July 2009 (UTC)

Back to Exams/Quizzes

Return to main

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison