Line 11: Line 11:
 
'''4.1 Vectors in the Plane and in 3-Space'''  
 
'''4.1 Vectors in the Plane and in 3-Space'''  
  
      Basic definitions of what a vector and a coordinate system is (see book). I am under the impression that you have had enough math to know what these are. 
+
      Basic definitions of what a vector and a coordinate system is (see book). I am under the impression that you have had enough math to know what these are.   
  
 
<br>
 
<br>
Line 19: Line 19:
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; A '''real vector space''' is a set V of elements on which we have two operations + and ∙ defined with the following properties:  
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; A '''real vector space''' is a set V of elements on which we have two operations + and ∙ defined with the following properties:  
 
<blockquote>&nbsp;&nbsp;&nbsp;&nbsp; (a) If u and v are any elements in V, then u + v is in V. We say that V is '''closed''' under the operation +<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1. u + v = v + u for all u, v in V<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2. u + (v + w) = (u + v) + w for all u, v, w in V<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;3. There exists an element 0 in V such that u + 0 = 0 + u = u for any u in V<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4. For each u in V there exists an element –u in V such that u + -u = -u + u = 0<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(b) If u is any element in V and c is any real number, then c ∙ u is in V<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1. c ∙ (u + v) = c ∙ u + c ∙ v for any u, v in V and any real number c<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2. (c + d) ∙ u = c ∙ u + d ∙ u for any u in V and any real numbers c and d<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;3. c ∙ (d ∙ u) = (cd) ∙ u for any u in V and any real numbers c and d<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4. 1 ∙ u = u for any u in V </blockquote>
 
<blockquote>&nbsp;&nbsp;&nbsp;&nbsp; (a) If u and v are any elements in V, then u + v is in V. We say that V is '''closed''' under the operation +<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1. u + v = v + u for all u, v in V<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2. u + (v + w) = (u + v) + w for all u, v, w in V<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;3. There exists an element 0 in V such that u + 0 = 0 + u = u for any u in V<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4. For each u in V there exists an element –u in V such that u + -u = -u + u = 0<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(b) If u is any element in V and c is any real number, then c ∙ u is in V<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1. c ∙ (u + v) = c ∙ u + c ∙ v for any u, v in V and any real number c<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2. (c + d) ∙ u = c ∙ u + d ∙ u for any u in V and any real numbers c and d<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;3. c ∙ (d ∙ u) = (cd) ∙ u for any u in V and any real numbers c and d<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4. 1 ∙ u = u for any u in V </blockquote>
<br>'''4.3 Subspaces'''  
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; The operation "+" is called '''vector addition '''and the operation "∙" is&nbsp;'''scalar multiplication'''.&nbsp;&nbsp;<br>'''&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''''<b>&nbsp;</b>''
 +
 
 +
'''''&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''Examples'':
 +
<blockquote>
 +
#&nbsp;Let R<sup>n</sup> be the set of all 1 x n matrices [a<sub>1 </sub>a<sub>2</sub> ··· a<sub>n</sub>], where we define "+"&nbsp;by
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[a<sub>1</sub> a<sub>2</sub> ··· a<sub>n</sub>] + [b<sub>1</sub>&nbsp;b<sub>2 </sub>··· b<sub>n</sub>] = [a<sub>1</sub>+ b<sub>1&nbsp;&nbsp; </sub>a<sub>2</sub> + b<sub>2</sub> ··· a<sub>n</sub> + b<sub>n</sub>]&nbsp;and we define "·" by&nbsp;c · [a<sub>1</sub> a<sub>2</sub> ··· a<sub>n</sub>] = [ca<sub>1</sub> ca<sub>2</sub> ··· ca<sub>n</sub>] </blockquote>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;2.&nbsp;&nbsp;&nbsp;The same principles can be applied to&nbsp;polynomials
 +
 
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;p(t) = a<sub>n</sub>t<sup>n</sup>&nbsp;+&nbsp;a<sub>n-1</sub>t<sup>n-1</sup>&nbsp;+ ··· +&nbsp;a<sub>1</sub>t + a<sub>0</sub>
 +
 
 +
<sub></sub>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; q(t) = b<sub>n</sub>t<sup>n</sup> + b<sub>n-1</sub>t<sup>n-1</sup> + ··· +&nbsp;b<sub>1</sub>t +&nbsp;b<sub>0</sub>
 +
 
 +
 
 +
 
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; p(t) + q(t) = (a<sub>n</sub>+b<sub>n</sub>)t<sup>n </sup>+ (a<sub>n-1</sub> + b<sub>n-1</sub>)t<sup>n-1</sup> + ··· +&nbsp;(a<sub>1</sub> + b<sub>1</sub>)t + (a<sub>0</sub> + b<sub>0</sub>)
 +
 
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; c · p(t) = (ca<sub>n</sub>)t<sup>n</sup> + (ca<sub>n-1</sub>)t<sup>n-1</sup> +&nbsp;··· +&nbsp;(ca<sub>1</sub>)t + (ca<sub>0</sub>)
 +
 
 +
<br>
 +
<blockquote></blockquote>
 +
'''4.3 Subspaces'''  
  
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subspace is a “mini” vector space that satisfies all of the properties mentioned in section 4.2. An easy way to test if something is a subspace is to see if it satisfies the addition and scalar multiplication properties.  
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subspace is a “mini” vector space that satisfies all of the properties mentioned in section 4.2. An easy way to test if something is a subspace is to see if it satisfies the addition and scalar multiplication properties.  

Revision as of 09:22, 16 December 2010


Elementary Linear Algebra Chapter 4: Real Vector Spaces

Welcome!

Note: This page is based on the fourth chapter in Elementary Linear Algebra with Applications (Ninth Edition) by Bernard Kolman and David R Hill.


4.1 Vectors in the Plane and in 3-Space

      Basic definitions of what a vector and a coordinate system is (see book). I am under the impression that you have had enough math to know what these are. 


4.2 Vector Spaces

      A real vector space is a set V of elements on which we have two operations + and ∙ defined with the following properties:

     (a) If u and v are any elements in V, then u + v is in V. We say that V is closed under the operation +
          1. u + v = v + u for all u, v in V
          2. u + (v + w) = (u + v) + w for all u, v, w in V
          3. There exists an element 0 in V such that u + 0 = 0 + u = u for any u in V
          4. For each u in V there exists an element –u in V such that u + -u = -u + u = 0
     (b) If u is any element in V and c is any real number, then c ∙ u is in V
          1. c ∙ (u + v) = c ∙ u + c ∙ v for any u, v in V and any real number c
          2. (c + d) ∙ u = c ∙ u + d ∙ u for any u in V and any real numbers c and d
          3. c ∙ (d ∙ u) = (cd) ∙ u for any u in V and any real numbers c and d
          4. 1 ∙ u = u for any u in V

      The operation "+" is called vector addition and the operation "∙" is scalar multiplication.  
      

      Examples:

  1.  Let Rn be the set of all 1 x n matrices [a1 a2 ··· an], where we define "+" by
                               [a1 a2 ··· an] + [b1 b2 ··· bn] = [a1+ b1   a2 + b2 ··· an + bn] and we define "·" by c · [a1 a2 ··· an] = [ca1 ca2 ··· can]

                2.   The same principles can be applied to polynomials

                               p(t) = antn + an-1tn-1 + ··· + a1t + a0

                               q(t) = bntn + bn-1tn-1 + ··· + b1t + b0


                               p(t) + q(t) = (an+bn)tn + (an-1 + bn-1)tn-1 + ··· + (a1 + b1)t + (a0 + b0)

                               c · p(t) = (can)tn + (can-1)tn-1 + ··· + (ca1)t + (ca0)


4.3 Subspaces

      A subspace is a “mini” vector space that satisfies all of the properties mentioned in section 4.2. An easy way to test if something is a subspace is to see if it satisfies the addition and scalar multiplication properties.


4.4 Span

      Let S be a set of vectors in a vector space V. If every vector in V is a linear combination of the vectors in S, then the set S is said to span V, or V is spanned by the set S; that is, span S = V.


4.5 Linear Independence

     Linear Independence is when all vectors in a set of vectors are unique. So if there are two vectors in a set that are a combination of other vectors in the the set, then the set is not linear independent.

4.6 Basis and Dimension

     The vectors in a vector space V are said to form a basis for V if they:
           (1) span V
           (2) linear independent

     The dimension of a nonzero vector space V is the number of vectors in a basis for V. We often write dim V for the dimension of V. We also define the dimension of the trivial vector space {0} to be zero.


4.7 Homogeneous Systems


4.9 Rank of a Matrix

• If A is an m × n matrix, then rank A + nullity A =n
• A is nonsingular if and only if rank A = n
• If A is an n × n matrix, then rank A = n if and only if det(A) ≠ 0





Back to 2010 Fall MA 265 Momin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett