Revision as of 21:36, 21 June 2009 by Jfmartin (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

$ x\left[n\right]=\sqrt{n} $


$ E_{\infty}=\sum_{n=-\infty}^{\infty} \left | x \left[ n \right ] \right | ^2 = \lim_{N \rightarrow \infty } \sum_{n=-N}^{N} \left | x \left[ n \right ] \right | ^2 $
$ E_{\infty}=\sum_{n=-\infty}^{\infty} \left | \sqrt{n} \right | ^2 $
$ E_{\infty}=\underbrace{\sum_{n=-\infty}^{-1} \left | \sqrt{n} \right | ^2}_{0} + \sum_{n=0}^{\infty} \left | \sqrt{n} \right | ^2 $
$ E_{\infty}=\sum_{n=0}^{\infty} n = \lim_{N \rightarrow \infty } \sum_{n=0}^{N} n $
$ E_{\infty}= \lim_{N \rightarrow \infty } \frac{N \left ( N+1 \right ) }{2} =\infty $


$ P_{\infty}=\lim_{N \rightarrow \infty } \frac{1}{2N + 1} \sum_{n=-N}^{N} \left | x \left[ n \right ] \right | ^2 $
$ P_{\infty}=\lim_{N \rightarrow \infty } \frac{1}{2N + 1} \sum_{n=-N}^{N} \left | \sqrt{n} \right | ^2 $
$ P_{\infty}=\lim_{N \rightarrow \infty } \frac{1}{2N + 1} \frac{N \left ( N+1 \right ) }{2}=\infty $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood