Line 19: Line 19:
 
<math>x(t)=\cos(t)+j*\sin(t)</math>
 
<math>x(t)=\cos(t)+j*\sin(t)</math>
  
<math>\infty=1/(2*T)\int_{-\infty}^\infty |x(t)|^2dt</math>
+
<math>P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |x(t)|^2dt</math>
  
<math>P\infty=\int_{-\infty}^\infty |\sin(t)+\cos(t)|^2dt</math>
+
<math>P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |\cos(t)+j\sin(t)|^2dt</math>
 +
 
 +
<math>P\infty=\lim_{T \to \infty}\int_{-\infty}^\infty |e^{j*t}|^2dt</math>
 +
 
 +
<math>P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |e^2*e^{j*t}|dt</math>
 +
 
 +
<math>P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |e^2*e^{j*t}|dt</math>
 +
 
 +
<math>P\infty=\frac{\int_{-\infty}^\infty |e^2*e^{j*t}|dt}{\lim_{T \to \infty}2*T*\int_{-\infty}^\infty |e^2*e^{j*t}|dt)}</math>
 +
 
 +
<math>P\infty=\frac{1}{\lim_{T \to \infty}2*T}</math>
 +
 
 +
 
 +
<math>P\infty=0</math>

Revision as of 19:25, 20 June 2009

Compute $ E\infty $

$ x(t)=\cos(t)+j*\sin(t) $

$ E\infty=\int_{-\infty}^\infty |x(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |\cos(t)+j\sin(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |e^{j*t}|^2dt $

$ E\infty=\int_{-\infty}^\infty |e^2*e^{j*t}|dt $

$ E\infty=e^2/j*(\infty-0) $

$ E\infty=\infty $

Compute $ P\infty $

$ x(t)=\cos(t)+j*\sin(t) $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |x(t)|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |\cos(t)+j\sin(t)|^2dt $

$ P\infty=\lim_{T \to \infty}\int_{-\infty}^\infty |e^{j*t}|^2dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |e^2*e^{j*t}|dt $

$ P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-\infty}^\infty |e^2*e^{j*t}|dt $

$ P\infty=\frac{\int_{-\infty}^\infty |e^2*e^{j*t}|dt}{\lim_{T \to \infty}2*T*\int_{-\infty}^\infty |e^2*e^{j*t}|dt)} $

$ P\infty=\frac{1}{\lim_{T \to \infty}2*T} $


$ P\infty=0 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett