Line 5: Line 5:
 
<math>E_\infty = \int_{-\infty}^\infty 25*sin(t)^2u(t)\,dt)</math>
 
<math>E_\infty = \int_{-\infty}^\infty 25*sin(t)^2u(t)\,dt)</math>
  
<math>E_\infty = \int_{-\infty}^\infty .5 + .5*cos(2t),dt)</math>
+
<math>E_\infty = \int_{-\infty}^\infty 25*(.5 + .5*cos(2t)),dt)</math>
  
 
<math>E_\infty  =\frac{t}{2} + frac{sin(t)}{4}\bigg]_-infty^\infty)</math>
 
<math>E_\infty  =\frac{t}{2} + frac{sin(t)}{4}\bigg]_-infty^\infty)</math>
  
 
<math>E_\infty  =\infty-0 = \infty</math>
 
<math>E_\infty  =\infty-0 = \infty</math>

Revision as of 03:54, 22 June 2009

$ f(t)=j*5*sin(t) $

$ E_\infty = \int_{-\infty}^\infty |5*sin(t)|^2\,dt) $

$ E_\infty = \int_{-\infty}^\infty 25*sin(t)^2u(t)\,dt) $

$ E_\infty = \int_{-\infty}^\infty 25*(.5 + .5*cos(2t)),dt) $

$ E_\infty =\frac{t}{2} + frac{sin(t)}{4}\bigg]_-infty^\infty) $

$ E_\infty =\infty-0 = \infty $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood