(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>f(t)=j*5*sin(t)</math>
+
[[Category:energy]]
 +
[[Category:signal]]
 +
[[Category:ECE]]
 +
[[Category:ECE301]]
 +
[[Category:practice problem]]
  
<math>E_\infty = \int_{-\infty}^\infty |5sin(t)|^2\,dt)</math>
 
  
<math>E_\infty = \int_{-\infty}^\infty 25sin(t)^2u(t)\,dt)</math>
+
==Problem==
 +
Calculate the energy <math>E_\infty</math> and the average power <math>P_\infty</math> for the CT signal
 +
<math>f(t)=5 j \sin (t)</math>
 +
----
 +
==Solution 1==
 +
<math>E_\infty = \int_{-\infty}^\infty |5sin(t)|^2\,dt</math>
  
<math>E_\infty = \int_{-\infty}^\infty 25(.5 + .5cos(2t)),dt)</math>
+
<math>E_\infty = \int_{-\infty}^\infty 25sin(t)^2 \,dt</math>
  
<math>E_\infty =\frac{t}{2} + \frac{sin(t)}{4}\bigg]_(-infty)^\infty)</math>
+
<math>E_\infty = \int_{-\infty}^\infty 25(.5 + .5cos(2t)),dt</math>
  
<math>E_\infty  =\infty-0 = \infty</math>
+
<math>E_\infty  =\frac{25t}{2} + \frac{25sin(2t)}{4}\bigg]_{-\infty}^\infty)</math>
 +
 
 +
<math>E_\infty  =\infty-0 = \infty</math> <span style="color:violet"> (*) </span>
 +
 
 +
<math>P_\infty calculation</math>
 +
 
 +
<math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T|5sin(t)|^2dt</math>
 +
 
 +
<math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T \frac{25}{2} + \frac{25cos(2t)}{2}dt</math>
 +
 
 +
<math>= lim_{T \to \infty} \frac{1}{2T}*(\frac{25t}{2} + \frac{25sin(t)}{4}|_{-T}^T)</math> <span style="color:green"> (*) </span> <span style="color:orange">(*)</span>
 +
 
 +
<math>= lim_{T \to \infty} \frac{1}{2T}*(25T + \frac{25sin(T)}{4}-\frac{25sin(-T)}{4}</math> <span style="color:orange">(*)</span>
 +
 
 +
<math>= lim_{T \to \infty} \frac{1}{2T}*(25T + \frac{25sin(T)}{2})</math> <span style="color:orange">(*)</span>
 +
 
 +
<math>P\infty= \frac{25}{2} + 0</math>
 +
 
 +
*<span style="color:orange"> * I would not use the star symbol to denote multiplication here. It is usually reserved for convolution in electrical engineering.</span>
 +
*<span style="color:green"> * You are missing a 2 inside the sine.</span>
 +
*<span style="color:violet"> *You should not put a zero here, as the limit when t goes to infinity of of sin(t) is not defined.  </span>
 +
----
 +
==Solution 2==
 +
<math>E_\infty = \int_{-\infty}^\infty |5sin(t)|^2\,dt = \int_{-\infty}^\infty 25sin(t)^2 dt = \infty,</math> since the function integrated is always non-negative and does not decrease as t approaches <math>\pm \infty </math>.
 +
 
 +
 
 +
<math>P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T|5sin(t)|^2dt= lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T25 \sin^2 (t) dt = lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T \frac{25}{2} + \frac{25cos(2t)}{2}dt</math>
 +
 
 +
<math>= lim_{T \to \infty} \frac{1}{2T}\left.\left( \frac{25t}{2} + \frac{25sin(2t)}{4} \right)\right|_{-T}^T \, </math>
 +
 
 +
<math>= lim_{T \to \infty} \frac{1}{2T}\left( 25T + \frac{25sin(2T)}{4}-\frac{25sin(-2T)}{4}\right) </math>
 +
 
 +
<math>= lim_{T \to \infty} \frac{25}{2}+ \frac{25sin(2T)}{4T}</math>
 +
 
 +
<math>= \frac{25}{2} + 0</math>, since <math> \sin (2T) </math> is bounded by (-1) and 1
 +
 
 +
<math> = \frac{25}{2} </math>
 +
*<span style="color:green"> Looks good!</span>
 +
----
 +
----
 +
[[Signal_energy_CT|Back to CT signal energy page]]

Latest revision as of 17:55, 25 February 2015


Problem

Calculate the energy $ E_\infty $ and the average power $ P_\infty $ for the CT signal $ f(t)=5 j \sin (t) $


Solution 1

$ E_\infty = \int_{-\infty}^\infty |5sin(t)|^2\,dt $

$ E_\infty = \int_{-\infty}^\infty 25sin(t)^2 \,dt $

$ E_\infty = \int_{-\infty}^\infty 25(.5 + .5cos(2t)),dt $

$ E_\infty =\frac{25t}{2} + \frac{25sin(2t)}{4}\bigg]_{-\infty}^\infty) $

$ E_\infty =\infty-0 = \infty $ (*)

$ P_\infty calculation $

$ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T|5sin(t)|^2dt $

$ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T \frac{25}{2} + \frac{25cos(2t)}{2}dt $

$ = lim_{T \to \infty} \frac{1}{2T}*(\frac{25t}{2} + \frac{25sin(t)}{4}|_{-T}^T) $ (*) (*)

$ = lim_{T \to \infty} \frac{1}{2T}*(25T + \frac{25sin(T)}{4}-\frac{25sin(-T)}{4} $ (*)

$ = lim_{T \to \infty} \frac{1}{2T}*(25T + \frac{25sin(T)}{2}) $ (*)

$ P\infty= \frac{25}{2} + 0 $

  • * I would not use the star symbol to denote multiplication here. It is usually reserved for convolution in electrical engineering.
  • * You are missing a 2 inside the sine.
  • *You should not put a zero here, as the limit when t goes to infinity of of sin(t) is not defined.

Solution 2

$ E_\infty = \int_{-\infty}^\infty |5sin(t)|^2\,dt = \int_{-\infty}^\infty 25sin(t)^2 dt = \infty, $ since the function integrated is always non-negative and does not decrease as t approaches $ \pm \infty $.


$ P\infty=lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T|5sin(t)|^2dt= lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T25 \sin^2 (t) dt = lim_{T \to \infty} \ \frac{1}{(2T)}\int_{-T}^T \frac{25}{2} + \frac{25cos(2t)}{2}dt $

$ = lim_{T \to \infty} \frac{1}{2T}\left.\left( \frac{25t}{2} + \frac{25sin(2t)}{4} \right)\right|_{-T}^T \, $

$ = lim_{T \to \infty} \frac{1}{2T}\left( 25T + \frac{25sin(2T)}{4}-\frac{25sin(-2T)}{4}\right) $

$ = lim_{T \to \infty} \frac{25}{2}+ \frac{25sin(2T)}{4T} $

$ = \frac{25}{2} + 0 $, since $ \sin (2T) $ is bounded by (-1) and 1

$ = \frac{25}{2} $

  • Looks good!


Back to CT signal energy page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett