(Created page with complete solution)
 
(Fixed hyperlink at the bottom of the page)
 
(One intermediate revision by the same user not shown)
Line 32: Line 32:
 
\vec{\lambda}_{qds}^{n} &= \frac{1}{5} \begin{bmatrix} 23 & 1 \\ -4 & 27 \end{bmatrix} \vec{i}_{qds}^{n} + \frac{1}{4} \begin{bmatrix} -1 & -2 \\ 3 & -4 \end{bmatrix} \vec{i}_{qdr}^{n}
 
\vec{\lambda}_{qds}^{n} &= \frac{1}{5} \begin{bmatrix} 23 & 1 \\ -4 & 27 \end{bmatrix} \vec{i}_{qds}^{n} + \frac{1}{4} \begin{bmatrix} -1 & -2 \\ 3 & -4 \end{bmatrix} \vec{i}_{qdr}^{n}
 
\end{align}</math>
 
\end{align}</math>
 
Recall by the Quotient Rule or the Chain Rule + Power Rule that <math>\frac{d}{dt} \frac{a}{\sum_{k=0}^K b_k t^k} = \frac{-a\sum_{k=1}^K k b_k t^{k - 1}}{\left(\sum_{k=0}^K b_k t^k\right)^2}</math> for <math>a, b_k, K \in \mathbb{R}</math>. The vector voltage equation is finished.
 
  
 
The "new" reference frame stator flux linkage equations can be expressed separately.
 
The "new" reference frame stator flux linkage equations can be expressed separately.
Line 50: Line 48:
 
----
 
----
 
----
 
----
[[ECE_PhD_QE_PE1_2001|Back to PE-1, August 2011]]
+
[[ECE_PhD_QE_PE1_2011|Back to PE-1, August 2011]]

Latest revision as of 19:03, 26 January 2018


Answers and Discussions for

ECE Ph.D. Qualifying Exam PE-1 August 2011



Problem 3

To move from stator phase variables to the "new" reference frame, pre-multiply by $ \mathbf{K}_s^n = \begin{bmatrix} 2 & +1 \\ -1 & 2 \end{bmatrix} $. To do the opposite and move from the "new" reference frame to stator phase variables, pre-multiply by $ \left(\mathbf{K}_s^n\right)^{-1} = \frac{1}{5} \begin{bmatrix} 2 & -1 \\ +1 & 2 \end{bmatrix} $. The inverse matrix is found with the explicit formula the the inverse of a 2x2 matrix and its determinant as well. To move from rotor phase variables to the "new" reference frame, pre-multiply by $ \mathbf{K}_r^n = \begin{bmatrix} 4 & +4 \\ +2 & 4 \end{bmatrix} $. To do the opposite and move from the "new" reference frame to rotor phase variables, pre-multiply by $ \left(\mathbf{K}_r^n\right)^{-1} = \frac{1}{8} \begin{bmatrix} 4 & -4 \\ -2 & 4 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 & -2 \\ -1 & 2 \end{bmatrix} $.

The stator flux linkage equations in stator phase variables and rotor phase variables are put in vector form.

$ \begin{equation} \vec{\lambda}_{abs} = \mathbf{L}_{ss} \vec{i}_{abs} + \mathbf{L}_{sr} \vec{i}_{abr} = \begin{bmatrix} 5 & 0 \\ -1 & 5 \end{bmatrix} \vec{i}_{abs} + \begin{bmatrix} -1 & -1 \\ 0 & -1 \end{bmatrix} \vec{i}_{abr} \end{equation} $

The transformation proceeds next.

$ \begin{align} \vec{\lambda}_{qds}^{n} &= \mathbf{K}_s^n \vec{\lambda}_{abs} \\ \vec{\lambda}_{qds}^{n} &= \mathbf{K}_s^n \mathbf{L}_{ss} \left(\mathbf{K}_s^n\right)^{-1} \vec{i}_{qds}^{n} + \mathbf{K}_s^n \mathbf{L}_{sr} \left(\mathbf{K}_r^n\right)^{-1} \vec{i}_{qdr}^{n} \\ \vec{\lambda}_{qds}^{n} &= \begin{bmatrix} 2 & +1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ -1 & 5 \end{bmatrix} \frac{1}{5} \begin{bmatrix} 2 & -1 \\ +1 & 2 \end{bmatrix} \vec{i}_{qds}^{n} + \begin{bmatrix} 2 & +1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & -1 \end{bmatrix} \frac{1}{4} \begin{bmatrix} 2 & -2 \\ -1 & 2 \end{bmatrix} \vec{i}_{qdr}^{n} \\ \vec{\lambda}_{qds}^{n} &= \frac{1}{5} \begin{bmatrix} 9 & 5 \\ -7 & 10 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ +1 & 2 \end{bmatrix} \vec{i}_{qds}^{n} + \frac{1}{4} \begin{bmatrix} -2 & -3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -1 & 2 \end{bmatrix} \vec{i}_{qdr}^{n} \\ \vec{\lambda}_{qds}^{n} &= \frac{1}{5} \begin{bmatrix} 23 & 1 \\ -4 & 27 \end{bmatrix} \vec{i}_{qds}^{n} + \frac{1}{4} \begin{bmatrix} -1 & -2 \\ 3 & -4 \end{bmatrix} \vec{i}_{qdr}^{n} \end{align} $

The "new" reference frame stator flux linkage equations can be expressed separately.

$ \begin{equation} \boxed{\lambda_{qs}^n = \frac{23}{5} i_{qs}^n + \frac{1}{5} i_{ds}^n - \frac{1}{4} i_{qr}^n - \frac{1}{2} i_{dr}^n} \end{equation} $

$ \begin{equation} \boxed{\lambda_{ds}^n = -\frac{4}{5} i_{qs}^n + \frac{27}{5} i_{ds}^n + \frac{3}{4} i_{qr}^n - i_{dr}^n} \end{equation} $


Discussion



Back to PE-1, August 2011

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett