(Created page with "Category:ECE Category:QE Category:MN Category:problem solving Category:Dynamics <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Ex...")
 
Line 25: Line 25:
  
 
=Solutions of all questions=
 
=Solutions of all questions=
 +
  
  
Line 50: Line 51:
  
 
<math>
 
<math>
k = \bigg(E/\alpha\bigg)^{\frac{1}{2}}
+
\[k = \bigg(E/\alpha\bigg)^{\frac{1}{2}}\]
 
</math>
 
</math>
  
 
<math>
 
<math>
\therefore \frac{dk}{dE} = \frac{1}{2}\frac{E^{-\frac{1}{2}}}{\alpha^{-\frac{1}{2}}}\cdot\frac{1}{\alpha} = \frac{\alpha^{-\frac{1}{2}}}{2}E^{-\frac{1}{2}}
+
\[\therefore \frac{dk}{dE} = \frac{1}{2}\frac{E^{-\frac{1}{2}}}{\alpha^{-\frac{1}{2}}}\cdot\frac{1}{\alpha} = \frac{\alpha^{-\frac{1}{2}}}{2}E^{-\frac{1}{2}}\]
 
</math>
 
</math>
  
Line 77: Line 78:
  
 
<math>
 
<math>
V(t) = \int_0^t a dt =at=\frac{qE_xt}{m^*}
+
\[V(t) = \int_0^t a dt =at=\frac{qE_xt}{m^*}\]
 
</math>
 
</math>
  
 
<math>
 
<math>
  V_{max} = V(\tau_1) = a\tau_1=\frac{qE_x\tau_1}{m^*}
+
  \[V_{max} = V(\tau_1) = a\tau_1=\frac{qE_x\tau_1}{m^*}\]
 
</math>
 
</math>
  
Line 89: Line 90:
  
 
<math>
 
<math>
x(t) = \int_0^tVdt=\int_0^t\frac{qE_x}{m^*}tdt = \frac{qE_x}{m^*}\cdot\frac{t^2}{2}
+
\[x(t) = \int_0^tVdt=\int_0^t\frac{qE_x}{m^*}tdt = \frac{qE_x}{m^*}\cdot\frac{t^2}{2}\]
 
</math>
 
</math>
  
 
<math>
 
<math>
\therefore x(\tau_1) =\frac{qE_x}{m^*}\cdot\frac{\tau_1^2}{2}
+
\[\therefore x(\tau_1) =\frac{qE_x}{m^*}\cdot\frac{\tau_1^2}{2}\]
 
</math>
 
</math>
  
Line 102: Line 103:
 
   
 
   
 
  <math>
 
  <math>
  v_{avg} = \mu E \text{ (So, we use the $2^{nd}$ plot)}
+
  \[v_{avg} = \mu E \text{ (So, we use the $2^{nd}$ plot)}\]
 
  </math>
 
  </math>
 
   
 
   
 
<math>
 
<math>
  \therefore \mu = \frac{v_{avg}}{E}
+
  \[\therefore \mu = \frac{v_{avg}}{E}\]
 
  </math>
 
  </math>
 
   
 
   
 
  So, we need to find avg. velocity and divide by the constant electric field value to find mobility.
 
  So, we need to find avg. velocity and divide by the constant electric field value to find mobility.
 +
 
  <math>
 
  <math>
  v_{avg} = \frac{V(0)+V(\tau_1)}{2} = \frac{V(\tau_1)}{2} = \frac{qE_x\tau_1}{2m^*}
+
  \[v_{avg} = \frac{V(0)+V(\tau_1)}{2} = \frac{V(\tau_1)}{2} = \frac{qE_x\tau_1}{2m^*}\]
 
   </math>
 
   </math>
 
    
 
    
 
<math>
 
<math>
\therefore \mu = \frac{qE_x\tau_1}{2m^*E_x} = \frac{q\tau_1}{2m^*}.
+
\[\therefore \mu = \frac{qE_x\tau_1}{2m^*E_x} = \frac{q\tau_1}{2m^*}.\]
 
</math>
 
</math>
  

Revision as of 19:10, 30 July 2017


ECE Ph.D. Qualifying Exam

MICROELECTRONICS and NANOTECHNOLOGY (MN)

Question 1: Semiconductor Fundamentals

August 2008



Questions

All questions are in this link


Solutions of all questions

a)

$ \begin{align*} \frac{1}{m^*} &= \frac{1}{\hslash^2}\frac{d^2E}{dk^2} \\ &=\frac{1}{\hslash^2}\frac{d^2}{dk^2}(\alpha k^2) \\ &=2\alpha/\hslash^2 \\ \therefore m^* &= \frac{\hslash^2}{2\alpha} \end{align*} $

------------------------------------------------------------------------------------
b)

$ \begin{align*} g(E) &=\frac{\pi(k+\triangle k)^2 - \pi k^2}{\frac{2\pi}{W}\cdot\frac{2\pi}{L}}\cdot\frac{1}{\triangle E}\cdot\frac{1}{WL}\\ &\approx \frac{1}{4\pi^2}\cdot(\pi\cdot2k\triangle k)\cdot\frac{1}{\triangle E}\\ &=\frac{1}{2\pi}k\frac{\triangle k}{\triangle E}\approx = \frac{1}{2\pi}k\frac{dk}{dE} \end{align*} $

$ \[k = \bigg(E/\alpha\bigg)^{\frac{1}{2}}\] $

$ \[\therefore \frac{dk}{dE} = \frac{1}{2}\frac{E^{-\frac{1}{2}}}{\alpha^{-\frac{1}{2}}}\cdot\frac{1}{\alpha} = \frac{\alpha^{-\frac{1}{2}}}{2}E^{-\frac{1}{2}}\] $

$ \begin{align*} \therefore g(E) &= \frac{1}{2\pi}\cdot\frac{E^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}}\cdot\frac{\alpha^{-\frac{1}{2}}}{2}E^{-\frac{1}{2}}\\ &=\frac{1}{4\pi \alpha} \end{align*} -------------------------------------------------------------------------------------- c) <math> \begin{align*} F&=-qE=qE_x\:\:\:\:\:\:\:\:\:\:\text{(+x direction)}\\ F &=m^*a = qE_x\\ \therefore a_{max} &=\frac{qE_x}{m^*}=a \:\:\:\:\:\:\:\:\:\:\text{(constant)} \end{align*} $

Alt text

$ \[V(t) = \int_0^t a dt =at=\frac{qE_xt}{m^*}\] $

$ \[V_{max} = V(\tau_1) = a\tau_1=\frac{qE_x\tau_1}{m^*}\] $

at $\tau_1; V$ goes to 0. Then this process repeats in the next 2 cycles.

Alt text

$ \[x(t) = \int_0^tVdt=\int_0^t\frac{qE_x}{m^*}tdt = \frac{qE_x}{m^*}\cdot\frac{t^2}{2}\] $

$ \[\therefore x(\tau_1) =\frac{qE_x}{m^*}\cdot\frac{\tau_1^2}{2}\] $

At $t = \tau_1$; electron will be at $x(\tau_1).$ For the next cycle; this position will be the initial one.

 --------------------------------------------------------------------------------------
d)

$   \[v_{avg} = \mu E \text{ (So, we use the $2^{nd}$ plot)}\]   $

$ \[\therefore \mu = \frac{v_{avg}}{E}\] $

So, we need to find avg. velocity and divide by the constant electric field value to find mobility.

$   \[v_{avg} = \frac{V(0)+V(\tau_1)}{2} = \frac{V(\tau_1)}{2} = \frac{qE_x\tau_1}{2m^*}\]    $
 

$ \[\therefore \mu = \frac{qE_x\tau_1}{2m^*E_x} = \frac{q\tau_1}{2m^*}.\] $

 --------------------------------------------------------------------------------------
e)

\noindent For elastic scattering, velocity cannot change. As the velocity goes to zero here, it cannot be elastic.\\
Ans: ii



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett