Line 25: Line 25:
 
=Solutions of all questions=
 
=Solutions of all questions=
  
1)
 
<math>
 
\begin{align*}
 
n& = \int_{E_c}^\infty D(E)f(E)dE\\
 
&=\int_{E_c}^\infty\frac{2(E - E_c)}{\pi\hslash^2V_F^2}\cdot\frac{1}{1+e^{(E-E_F)/kT}}dE
 
\end{align*}
 
</math>
 
 
  Let;
 
 
<math>
 
\begin{align*}
 
\eta &=\frac{E-E_c}{kT}\:\:\:\:\:\:\therefore dE = kTd\eta\\
 
\eta_c &=\frac{E_F-E_c}{kT}
 
\end{align*}
 
</math>
 
 
  <math>
 
\begin{align*}
 
n& = \frac{2}{\pi\hslash^2V_F^2}\cdot(kT)^2\int_0^\infty\frac{\eta d\eta}{1+e^{\eta-\eta_c}}\\
 
&=\frac{2(kT)^2}{\pi\hslash^2V_F^2}\cdot\cancelto{1!}{\Gamma 2}\cdot F_1(\eta_c)\\
 
&=\frac{2(kT)^2}{\pi\hslash^2V_F^2} F_1(\eta_c)\\
 
\end{align*}
 
</math>
 
 
  ------------------------------------------------------------------------------------
 
 
2)
 
 
At <math>T = 0\:\:\:\:\:f(E) = 1</math> for <math>E\le E_F</math>
 
 
<math>
 
\begin{align*}
 
\therefore n &=\int_{E_c}^{E_F}D(E)dE\\
 
&=\int_{E_c}^{E_F}\frac{2(E-E_c)}{\pi\hslash^2V_F^2}dE\\
 
&=\frac{2}{\pi\hslash^2V_F^2}\cdot\frac{(E-E_c)^2}{2}\bigg\vert_{E_c}^{E_F}\\
 
&=\frac{(E_F-E_c)^2}{\pi\hslash^2V_F^2}
 
\end{align*}
 
</math>
 
 
 
------------------------------------------------------------------------------------\\
 
3)
 
For Maxwell Boltzmann Statistics
 
<math>F_1(\eta_c)\to e^{\eta_c}</math>
 
 
if
 
 
<math>\eta_c\le-3</math>
 
 
<math>E_F-E_c\le-3kT</math>
 
 
<math>E_c-E_F\ge3kT</math>
 
 
<math>\therefore n = \frac{2(kT)^2}{\pi\hslash^2V_F^2}\cdot e^{(E_F-E_c)/kT}</math>
 
 
------------------------------------------------------------------------------------\\
 
4)
 
 
<math>\bar{u} = \frac{\int_{E_c}^\infty D(E)f(E)(E-E_c)dE}{\int_{E_c}^\infty D(E)f(E)dE}</math>
 
 
from (1);
 
<math>
 
\begin{align*}
 
\text{Denominator} &= \frac{2(kT)^2}{\pi\hslash^2V_F^2}F_1(\eta_c)\\
 
\text{Numerator} &= \int_{E_c}^\infty\frac{2(E-E_c)^2}{\pi\hslash^2V_F^2}\cdot\frac{1}{1+e^{(E-E_F)/kT}}dE\\
 
&=\frac{2}{\pi\hslash^2V_F^2}(kT)^3\int_0^\infty\frac{\eta^2d\eta}{1+e^{\eta-\eta_c}}\\
 
&=\frac{2(kT)^3}{\pi\hslash^2V_F^2}\cdot\cancelto{2!}{\Gamma 3}\cdot F_2(\eta_c)\\
 
&=\frac{4(kT)^3}{\pi\hslash^2V_F^2} F_2(\eta_c)
 
\end{align*}
 
</math>
 
 
<math>\therefore\bar{u} = 2kT\frac{F_2(\eta_c)}{F_1(\eta_c)}</math>
 
 
 
------------------------------------------------------------------------------------\\
 
5)
 
At <math>T=0</math>
 
 
<math>\bar{u} = \frac{\int_{E_c}^E D(E)(E-E_c)dE}{\int_{E_c}^{E_F} D(E)dE}</math>
 
 
<math>
 
\begin{align*}
 
n &= D(E)f(E)\\
 
&=\frac{\int(E-E_c)D(E)f(E)}{\int D(E)f(E)dE}
 
\end{align*}
 
</math>
 
 
<math>
 
\begin{align*}
 
\text{Denominator} &= \frac{(E_F-E_c)^2}{\pi\hslash^2V_F^2}\\
 
\text{Numerator} &= \int_{E_c}^{E_F}\frac{2(E-E_c)^2}{\pi\hslash^2V_F^2}dE\\
 
&=\frac{2}{\pi\hslash^2V_F}\cdot\frac{(E-E_c)^3}{3}\bigg\vert_{E_c}^{E_F}\\
 
&=\frac{2(E_F-E_c)^3}{3\pi\hslash^2V_F}
 
\end{align*}
 
</math>
 
 
<math>\therefore\bar{u} = \frac{2}{3}(E_F - E_c)</math>
 
 
 
------------------------------------------------------------------------------------\\
 
6)
 
For Maxwell-Boltzmann statistics
 
At <math>T=0</math>
 
 
<math>F_1(\eta_c) = F_2(\eta_c)\to e^{\eta_c}</math>
 
 
<math>\therefore \bar{u} = 2kT.</math>
 
 
------------------------------------------------------------------------------------\\
 
 
   
 
   
  

Revision as of 19:41, 30 July 2017


ECE Ph.D. Qualifying Exam

MICROELECTRONICS and NANOTECHNOLOGY (MN)

Question 1: Semiconductor Fundamentals

August 2007



Questions

All questions are in this link

Solutions of all questions


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch