Line 32: Line 32:
  
 
=Solution=
 
=Solution=
[[Image:cube.png|Alt text|300x300px]]
+
:'''Click [[ECE_PhD_QE_FO_2013_Problem2.1|here]] to view student [[ECE_PhD_QE_FO_2013_Problem2.1|answers and discussions]]'''
 
+
<math>
+
\begin{align*}
+
\nabla \cdot \bar{D} &= \rho \\
+
\quad (\frac{\partial}{\partial x}\hat{x}+\frac{\partial}{\partial y}\hat{y}+\frac{\partial}{\partial z}\hat{z})\cdot(2\hat{x})&=\rho \\
+
\frac{\partial}{\partial x}(2)&=0=\rho \quad \text{(no charge)}
+
\end{align*}
+
</math>
+
 
+
Also:
+
 
+
<math>
+
\begin{align*}
+
\oint \bar{D}\cdot d\bar{S}&=Q\\
+
&=\int2(dS_x)+\int2(-dS_x)=2-2=\boxed{0}
+
\end{align*}
+
</math>
+
  
 
==Question 3==
 
==Question 3==
Line 57: Line 40:
  
 
=Solution=
 
=Solution=
Using superposition <br/>
+
:'''Click [[ECE_PhD_QE_FO_2013_Problem3.1|here]] to view student [[ECE_PhD_QE_FO_2013_Problem3.1|answers and discussions]]'''
In the left cylinder <br/>
+
<math>
+
\begin{equation*}
+
\nabla\times \bar{H}=\bar{J} \longrightarrow \oint \bar{H}\cdot d\bar{l}=\int_S\bar{J}\cdot d\bar{S}
+
\qquad \left\{ \begin{aligned}
+
dl&=dr\hat{r}+rd\phi\hat{\phi}+dz\hat{z}\\
+
d\bar{S}_z&=rd\phi dr\hat{z}
+
\end{aligned} \right.
+
\end{equation*}
+
</math>
+
<br/>
+
<math>
+
\begin{align*}
+
\int_0^{2\pi}H_{\phi}(rd\phi)&=\int_0^r\int_0^{2\pi} J_0(r'd\phi dr')\\
+
H_{\phi}(2\pi r)&=2\pi J_0(\frac{r^2}{2}) \\
+
& \boxed{\bar{H}=\frac{J_0r}{2}\hat{\phi}}
+
\end{align*}
+
</math>
+
<br/>
+
[[Image:cil.png|Alt text|300x300px]]
+
<br/>
+
<math>
+
\begin{align*}
+
\text{Transform to cartesian:}&\left\{\begin{aligned}
+
r&=\sqrt{x^2+y^2}\\
+
\hat{\phi}&=-sin\phi\hat{x}+cos\phi\hat{y}\\
+
&=(\frac{-y}{\sqrt{x^2+y^2}})\hat{x}+(\frac{x}{\sqrt{x^2+y^2}})\hat{y}
+
\end{aligned}\right. \\
+
& \boxed{\bar{H}_L=\frac{J_0}{2}\left[-y\hat{x}+x\hat{y}\right]}
+
\end{align*}
+
</math>
+
 
+
In the right cilinder <br/>
+
<math>
+
\begin{align*}
+
&\bar{H}_R=\frac{-J_0}{2}\left[-y'\hat{x'}+x'\hat{y'}\right]&
+
\left\{
+
\begin{aligned}
+
x'&=x-3\\
+
y'&=y\\
+
\hat{x}'&=\hat{x}\\
+
\hat{y}'&=\hat{y}
+
\end{aligned}
+
\right.\\
+
&\boxed{\bar{H}_R=\frac{-J_0}{2}\left[-y\hat{x}+(x-3)\hat{y}\right]}&
+
\end{align*}
+
</math>
+
 
+
<math>
+
\begin{equation*}
+
\boxed{\bar{H}_T=\bar{H}_L+\bar{H}_R=\frac{3J_0}{2}\hat{y}}
+
\end{equation*}
+
</math>
+
  
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 21:52, 24 April 2017


ECE Ph.D. Qualifying Exam

Fields and Optics (FO)

Question 1: Statics 1

August 2013



Question 1

Alt text

Alt text

Solution

Click here to view student answers and discussions

Question 2

Alt text

Solution

Click here to view student answers and discussions

Question 3

Alt text

Alt text

Solution

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva