(One intermediate revision by the same user not shown)
Line 27: Line 27:
 
=Solution=
 
=Solution=
 
:'''Click [[ECE_PhD_QE_FO_2013_Problem1.1|here]] to view student [[ECE_PhD_QE_FO_2013_Problem1.1|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_FO_2013_Problem1.1|here]] to view student [[ECE_PhD_QE_FO_2013_Problem1.1|answers and discussions]]'''
<math>
 
\begin{equation*}
 
\left.\begin{aligned}
 
\nabla\cdot \bar{B}&=0\\
 
\oint_S \bar{B}\cdot d\bar{S}&=0
 
\end{aligned}\right\}
 
\longrightarrow \Phi=\oint_S \bar{B}\cdot d\bar{S} \Longrightarrow  \boxed{ \Phi=\oint_S \bar{B}\cdot d\bar{S}=0}
 
\end{equation*}
 
</math>
 
 
The magnetic flux through this closed surface is <math>\Phi</math>
 
 
<math>
 
\begin{equation*}
 
\boxed{\Phi=0}
 
\end{equation*}
 
</math>
 
  
 
==Question 2==
 
==Question 2==
Line 49: Line 32:
  
 
=Solution=
 
=Solution=
[[Image:cube.png|Alt text|300x300px]]
+
:'''Click [[ECE_PhD_QE_FO_2013_Problem2.1|here]] to view student [[ECE_PhD_QE_FO_2013_Problem2.1|answers and discussions]]'''
 
+
<math>
+
\begin{align*}
+
\nabla \cdot \bar{D} &= \rho \\
+
\quad (\frac{\partial}{\partial x}\hat{x}+\frac{\partial}{\partial y}\hat{y}+\frac{\partial}{\partial z}\hat{z})\cdot(2\hat{x})&=\rho \\
+
\frac{\partial}{\partial x}(2)&=0=\rho \quad \text{(no charge)}
+
\end{align*}
+
</math>
+
 
+
Also:
+
 
+
<math>
+
\begin{align*}
+
\oint \bar{D}\cdot d\bar{S}&=Q\\
+
&=\int2(dS_x)+\int2(-dS_x)=2-2=\boxed{0}
+
\end{align*}
+
</math>
+
  
 
==Question 3==
 
==Question 3==
Line 74: Line 40:
  
 
=Solution=
 
=Solution=
Using superposition <br/>
+
:'''Click [[ECE_PhD_QE_FO_2013_Problem3.1|here]] to view student [[ECE_PhD_QE_FO_2013_Problem3.1|answers and discussions]]'''
In the left cylinder <br/>
+
<math>
+
\begin{equation*}
+
\nabla\times \bar{H}=\bar{J} \longrightarrow \oint \bar{H}\cdot d\bar{l}=\int_S\bar{J}\cdot d\bar{S}
+
\qquad \left\{ \begin{aligned}
+
dl&=dr\hat{r}+rd\phi\hat{\phi}+dz\hat{z}\\
+
d\bar{S}_z&=rd\phi dr\hat{z}
+
\end{aligned} \right.
+
\end{equation*}
+
</math>
+
<br/>
+
<math>
+
\begin{align*}
+
\int_0^{2\pi}H_{\phi}(rd\phi)&=\int_0^r\int_0^{2\pi} J_0(r'd\phi dr')\\
+
H_{\phi}(2\pi r)&=2\pi J_0(\frac{r^2}{2}) \\
+
& \boxed{\bar{H}=\frac{J_0r}{2}\hat{\phi}}
+
\end{align*}
+
</math>
+
<br/>
+
[[Image:cil.png|Alt text|300x300px]]
+
<br/>
+
<math>
+
\begin{align*}
+
\text{Transform to cartesian:}&\left\{\begin{aligned}
+
r&=\sqrt{x^2+y^2}\\
+
\hat{\phi}&=-sin\phi\hat{x}+cos\phi\hat{y}\\
+
&=(\frac{-y}{\sqrt{x^2+y^2}})\hat{x}+(\frac{x}{\sqrt{x^2+y^2}})\hat{y}
+
\end{aligned}\right. \\
+
& \boxed{\bar{H}_L=\frac{J_0}{2}\left[-y\hat{x}+x\hat{y}\right]}
+
\end{align*}
+
</math>
+
 
+
In the right cilinder <br/>
+
<math>
+
\begin{align*}
+
&\bar{H}_R=\frac{-J_0}{2}\left[-y'\hat{x'}+x'\hat{y'}\right]&
+
\left\{
+
\begin{aligned}
+
x'&=x-3\\
+
y'&=y\\
+
\hat{x}'&=\hat{x}\\
+
\hat{y}'&=\hat{y}
+
\end{aligned}
+
\right.\\
+
&\boxed{\bar{H}_R=\frac{-J_0}{2}\left[-y\hat{x}+(x-3)\hat{y}\right]}&
+
\end{align*}
+
</math>
+
 
+
<math>
+
\begin{equation*}
+
\boxed{\bar{H}_T=\bar{H}_L+\bar{H}_R=\frac{3J_0}{2}\hat{y}}
+
\end{equation*}
+
</math>
+
 
+
 
+
 
+
 
+
 
+
==Question==
+
'''Part 1. '''
+
 
+
Consider <math class="inline">n</math> independent flips of a coin having probability <math class="inline">p</math> of landing on heads. Say that a changeover occurs whenever an outcome differs from the one preceding it. For instance, if <math class="inline">n=5</math> and the sequence <math class="inline">HHTHT</math> is observed, then there are 3 changeovers. Find the expected number of changeovers for <math class="inline">n</math> flips. ''Hint'': Express the number of changeovers as a sum of Bernoulli random variables.
+
 
+
:'''Click [[ECE_PhD_QE_CNSIP_2013_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2013_Problem1.1|answers and discussions]]'''
+
----
+
'''Part 2.'''
+
 
+
Let <math>X_1,X_2,...</math> be a sequence of jointly Gaussian random variables with covariance
+
 
+
<math>Cov(X_i,X_j) = \left\{ \begin{array}{ll}
+
{\sigma}^2, & i=j\\
+
\rho{\sigma}^2, & |i-j|=1\\
+
0, & otherwise
+
  \end{array} \right.</math>
+
 
+
Suppose we take 2 consecutive samples from this sequence to form a vector <math>X</math>, which is then linearly transformed to form a 2-dimensional random vector <math>Y=AX</math>. Find a matrix <math>A</math> so that the components of <math>Y</math> are independent random variables You must justify your answer.
+
 
+
:'''Click [[ECE_PhD_QE_CNSIP_2013_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2013_Problem1.2|answers and discussions]]'''
+
----
+
'''Part 3.'''
+
 
+
Let <math>X</math> be an exponential random variable with parameter <math>\lambda</math>, so that <math>f_X(x)=\lambda{exp}(-\lambda{x})u(x)</math>. Find the variance of <math>X</math>. You must show all of your work.
+
 
+
:'''Click [[ECE_PhD_QE_CNSIP_2013_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2013_Problem1.3|answers and discussions]]'''
+
----
+
'''Part 4.'''
+
 
+
Consider a sequence of independent random variables <math>X_1,X_2,...</math>, where <math>X_n</math> has pdf
+
 
+
<math>\begin{align}f_n(x)=&(1-\frac{1}{n})\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{1}{2\sigma^2}(x-\frac{n-1}{n}\sigma)^2]\\
+
&+\frac{1}{n}\sigma exp(-\sigma x)u(x)\end{align}</math>.
+
 
+
Does this sequence converge in the mean-square sense? ''Hint:'' Use the Cauchy criterion for mean-square convergence, which states that a sequence of random variables <math>X_1,X_2,...</math> converges in mean-square if and only if <math>E[|X_n-X_{n+m}|] \to 0</math> as <math>n \to \infty</math>, for every <math>m>0</math>.
+
  
:'''Click [[ECE_PhD_QE_CNSIP_2013_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2013_Problem1.4|answers and discussions]]'''
 
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 21:52, 24 April 2017


ECE Ph.D. Qualifying Exam

Fields and Optics (FO)

Question 1: Statics 1

August 2013



Question 1

Alt text

Alt text

Solution

Click here to view student answers and discussions

Question 2

Alt text

Solution

Click here to view student answers and discussions

Question 3

Alt text

Alt text

Solution

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett