(Created page with "1) <math> \begin{align*} \nabla\cdot\bar{D}=\rho & \longrightarrow &\oint\bar{D}\cdot d\bar{S}=\int_V\rho dV=Q_{enc}& \qquad dS_{\rho}=\rho d\phi dz\\ & & &\qquad dV=\rho d\r...")
 
 
Line 11: Line 11:
 
<math>
 
<math>
 
\begin{align*}
 
\begin{align*}
\text{\underline{Line charge}:}& & \int_0^L\int_0^{2\pi}D_{\rho}(\rho d\phi dz)&=\rho_{l}(L)\\
+
\text{Line charge:}& & \int_0^L\int_0^{2\pi}D_{\rho}(\rho d\phi dz)&=\rho_{l}(L)\\
 
& & (2\pi L)D_{\rho}(\rho)&=\rho_{l}(L)\\
 
& & (2\pi L)D_{\rho}(\rho)&=\rho_{l}(L)\\
 
& & \bar{D}&=\frac{\rho_{l}}{2\pi\rho}\hat{\rho}\\
 
& & \bar{D}&=\frac{\rho_{l}}{2\pi\rho}\hat{\rho}\\
\text{\underline{Cylinder}:}& & &
+
\text{Cylinder:}& & &\\
\text{\underline{<math>\rho < 2<math>}:}& &\bar{D}&=0 \\
+
\rho < 2 & &\bar{D}&=0 \\
\text{\underline{<math>2<\rho<math>}:}& &  \int_0^L\int_0^{2\pi}D_{\rho}(\rho d\phi dz)&=\rho_{s}(2\pi)(2)(L)\\
+
\rho > 2 & &  \int_0^L\int_0^{2\pi}D_{\rho}(\rho d\phi dz)&=\rho_{s}(2\pi)(2)(L)\\
 
& & (2\pi L)D_{\rho}(\rho)&=(2\pi L)2\rho_{s}\\
 
& & (2\pi L)D_{\rho}(\rho)&=(2\pi L)2\rho_{s}\\
 
& & \bar{D}&=\frac{2\rho_{s}}{\rho}\hat{\rho}\\
 
& & \bar{D}&=\frac{2\rho_{s}}{\rho}\hat{\rho}\\
\text{\underline{Superposition}:}& &\boxed{\bar{D}=
+
\text{Superposition:}& &\boxed{\bar{D}=
 
\begin{cases}
 
\begin{cases}
 
\frac{\rho_{l}}{2\pi\rho}\hat{\rho}& \rho<2 \\
 
\frac{\rho_{l}}{2\pi\rho}\hat{\rho}& \rho<2 \\

Latest revision as of 19:58, 18 June 2017

1)

$ \begin{align*} \nabla\cdot\bar{D}=\rho & \longrightarrow &\oint\bar{D}\cdot d\bar{S}=\int_V\rho dV=Q_{enc}& \qquad dS_{\rho}=\rho d\phi dz\\ & & &\qquad dV=\rho d\rho d\phi dz \end{align*} $


$ \begin{align*} \text{Line charge:}& & \int_0^L\int_0^{2\pi}D_{\rho}(\rho d\phi dz)&=\rho_{l}(L)\\ & & (2\pi L)D_{\rho}(\rho)&=\rho_{l}(L)\\ & & \bar{D}&=\frac{\rho_{l}}{2\pi\rho}\hat{\rho}\\ \text{Cylinder:}& & &\\ \rho < 2 & &\bar{D}&=0 \\ \rho > 2 & & \int_0^L\int_0^{2\pi}D_{\rho}(\rho d\phi dz)&=\rho_{s}(2\pi)(2)(L)\\ & & (2\pi L)D_{\rho}(\rho)&=(2\pi L)2\rho_{s}\\ & & \bar{D}&=\frac{2\rho_{s}}{\rho}\hat{\rho}\\ \text{Superposition:}& &\boxed{\bar{D}= \begin{cases} \frac{\rho_{l}}{2\pi\rho}\hat{\rho}& \rho<2 \\ \left(\frac{\rho_{l}}{2\pi\rho}+\frac{2\rho_{s}}{\rho}\right)\hat{\rho}& 2<\rho \end{cases} } \end{align*} $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010