Line 1: Line 1:
a)  
+
a)
 +
 
 
<math>
 
<math>
 
TEM \to E_z = H_z = 0\\
 
TEM \to E_z = H_z = 0\\
Line 9: Line 10:
 
\right.
 
\right.
 
</math>
 
</math>
 +
assume these solutions in region  between conductors.
  
\begin{itemize}
+
solve wave equations:
\item assume these solutions in region  between conductors.
+
<math>
\item solve wave equations: $\left\{
+
\left\{
 
\begin{array}{ll}
 
\begin{array}{ll}
 
\nabla^2\bar{E} + k^2 \bar{E} =0 \hspace{1cm} \text{with BC's to find}\\
 
\nabla^2\bar{E} + k^2 \bar{E} =0 \hspace{1cm} \text{with BC's to find}\\
 
\nabla^2\bar{H} + k^2 \bar{E} =0 \hspace{1cm} \bar{E} \text{ and } \bar{H}
 
\nabla^2\bar{H} + k^2 \bar{E} =0 \hspace{1cm} \bar{E} \text{ and } \bar{H}
 
\end{array}
 
\end{array}
\right.$
+
\right.
\item $Z = \frac{|E|}{|H|}$
+
Z = \frac{|E|}{|H|}
\end{itemize}
+
</math><br>
 
+
Alternative: from transmission line theory :<br>
Alternative: from transmission line theory : $Z_0 = \sqrt{\frac{L}{C}}$ (lossless)
+
<math>Z_0 = \sqrt{\frac{L}{C}} (lossless)</math><br>
\begin{itemize}
+
find C by assuming same V on line (or Q) <br>
\item find $C$ by assuming same $V$ on line (or $Q$)
+
find L by assuming same I on the line <br>
\item find $L$ by assuming same $I$ on the line  
+
<math>
\end{itemize}
+
 
+
 
+
 
\textbf{Note:}\\
 
\textbf{Note:}\\
 
TEM\\
 
TEM\\
$Z_{TEM} = \frac{E_x}{E_y}$\\
+
Z_{TEM} = \frac{E_x}{E_y}\\
$\bar{H} = \frac{1}{Z_{\text{TEM}}}(\hat{z}x\bar{E})$
+
\bar{H} = \frac{1}{Z_{\text{TEM}}}(\hat{z}x\bar{E})
 +
</math><br>
  
b) find $C: C= \frac{Q}{V} $
+
b)
\[\oint \bar{D}\cdot d\bar{s} = Q\]
+
 
\[\int_0^L \int_0^{2\pi}\epsilon E_r(rd\phi dz) = Q\]
+
<math>
\[\epsilon E_r(2\pi r)L = Q\]
+
find C: C= \frac{Q}{V}  
\[\bar{E} = \frac{Q}{2\pi r\epsilon(L)}\hat{r}\]
+
\oint \bar{D}\cdot d\bar{s} = Q \\
 +
\int_0^L \int_0^{2\pi}\epsilon E_r(rd\phi dz) = Q\\
 +
\epsilon E_r(2\pi r)L = Q\\
 +
\bar{E} = \frac{Q}{2\pi r\epsilon(L)}\hat{r}\\
 
\begin{align*}  
 
\begin{align*}  
 
V_2 - V_1 &= - \int_1^2 \bar{E}\cdot dl\\
 
V_2 - V_1 &= - \int_1^2 \bar{E}\cdot dl\\
Line 43: Line 46:
 
&=\frac{Q}{2\pi L\epsilon}\ln\bigg(\frac{b}{a}\bigg)
 
&=\frac{Q}{2\pi L\epsilon}\ln\bigg(\frac{b}{a}\bigg)
 
\end{align*}
 
\end{align*}
\[C= \frac{2\pi L\epsilon}{\ln\big(\frac{b}{a}\big)}\]
+
\[C= \frac{2\pi L\epsilon}{\ln\big(\frac{b}{a}\big)}\]\\
 +
</math><br>
  
find $L: L = \frac{\Phi}{NI}$
+
<math>
\[\oint \bar{H}\cdot d\bar{l} = I_{enc}\]
+
find L: L = \frac{\Phi}{NI}\\
\[\int_0^{2\pi} H_\phi(rd\phi) = I\]
+
\oint \bar{H}\cdot d\bar{l} = I_{enc}\\
\[\bar{H} = \frac{I}{2\pi r}\hat{\phi}\]
+
\int_0^{2\pi} H_\phi(rd\phi) = I\\
 +
\bar{H} = \frac{I}{2\pi r}\hat{\phi}\\
 
\begin{align*}  
 
\begin{align*}  
 
\Phi &= \int \bar{B}\cdot d\bar{s}\\
 
\Phi &= \int \bar{B}\cdot d\bar{s}\\
Line 54: Line 59:
 
&= \frac{\mu IL}{2\pi}\ln\bigg(\frac{b}{a}\bigg)
 
&= \frac{\mu IL}{2\pi}\ln\bigg(\frac{b}{a}\bigg)
 
\end{align*}
 
\end{align*}
\[dl = dr\hat{r} + rd\phi\hat{\phi} +dz\hat{z}\]
+
dl = dr\hat{r} + rd\phi\hat{\phi} +dz\hat{z}\\
\[ds_{\phi} = drdz\]
+
ds_{\phi} = drdz\\
\[L = \frac{\mu L \ln \big(b/a\big)}{2\pi}\]
+
L = \frac{\mu L \ln \big(b/a\big)}{2\pi}\\
\[Z_o = \sqrt{\frac{L}{C}} = \sqrt{\frac{\frac{\mu L\ln(b/a)}{2\pi}}{{\frac{2\pi L\epsilon}{\ln(b/a)}}}} = \sqrt{\frac{\mu}{\epsilon}\bigg(\frac{\ln(b/a)}{2\pi}\bigg)^2}=\frac{\ln(b/a)}{2\pi}\sqrt{\frac{\mu}{\epsilon}}\]
+
Z_o = \sqrt{\frac{L}{C}} = \sqrt{\frac{\frac{\mu L\ln(b/a)}{2\pi}}{{\frac{2\pi L\epsilon}{\ln(b/a)}}}} = \sqrt{\frac{\mu}{\epsilon}\bigg(\frac{\ln(b/a)}{2\pi}\bigg)^2}=\frac{\ln(b/a)}{2\pi}\sqrt{\frac{\mu}{\epsilon}}\\
 +
</math><br>
  
c) no longer supports TEM mode; loss will cause  $\bar{E}_z \ne 0$ and/or $\bar{H}_z \ne 0$ due to variation of fields along $z$ (attenuation)
+
c)
 +
no longer supports TEM mode; loss will cause  <math>\bar{E}_z \ne 0</math> and/or <math>\bar{H}_z \ne 0</math> due to variation of fields along z (attenuation)

Revision as of 21:21, 3 June 2017

a)

$ TEM \to E_z = H_z = 0\\ \left\{ \begin{array}{ll} \bar{E} = E(x,y)e^{-\gamma z}e^{j\omega t} \hspace{1cm} \gamma = \alpha + j\beta\\ \bar{H} = H(x,y)e^{-\gamma z}e^{j\omega t} \hspace{1cm} \beta = \omega\sqrt{\mu \epsilon} \end{array} \right. $ assume these solutions in region between conductors.

solve wave equations: $ \left\{ \begin{array}{ll} \nabla^2\bar{E} + k^2 \bar{E} =0 \hspace{1cm} \text{with BC's to find}\\ \nabla^2\bar{H} + k^2 \bar{E} =0 \hspace{1cm} \bar{E} \text{ and } \bar{H} \end{array} \right. Z = \frac{|E|}{|H|} $
Alternative: from transmission line theory :
$ Z_0 = \sqrt{\frac{L}{C}} (lossless) $
find C by assuming same V on line (or Q)
find L by assuming same I on the line
$ \textbf{Note:}\\ TEM\\ Z_{TEM} = \frac{E_x}{E_y}\\ \bar{H} = \frac{1}{Z_{\text{TEM}}}(\hat{z}x\bar{E}) $

b)

$ find C: C= \frac{Q}{V} \oint \bar{D}\cdot d\bar{s} = Q \\ \int_0^L \int_0^{2\pi}\epsilon E_r(rd\phi dz) = Q\\ \epsilon E_r(2\pi r)L = Q\\ \bar{E} = \frac{Q}{2\pi r\epsilon(L)}\hat{r}\\ \begin{align*} V_2 - V_1 &= - \int_1^2 \bar{E}\cdot dl\\ &=-\int_b^a \frac{Q}{2\pi L\epsilon}\bigg(\frac{1}{r}\bigg)dr\\ &=\frac{Q}{2\pi L\epsilon}\ln\bigg(\frac{b}{a}\bigg) \end{align*} \[C= \frac{2\pi L\epsilon}{\ln\big(\frac{b}{a}\big)}\]\\ $

$ find L: L = \frac{\Phi}{NI}\\ \oint \bar{H}\cdot d\bar{l} = I_{enc}\\ \int_0^{2\pi} H_\phi(rd\phi) = I\\ \bar{H} = \frac{I}{2\pi r}\hat{\phi}\\ \begin{align*} \Phi &= \int \bar{B}\cdot d\bar{s}\\ &=\int_0^L\int_a^b \frac{\mu I}{2\pi r}drdz\\ &= \frac{\mu IL}{2\pi}\ln\bigg(\frac{b}{a}\bigg) \end{align*} dl = dr\hat{r} + rd\phi\hat{\phi} +dz\hat{z}\\ ds_{\phi} = drdz\\ L = \frac{\mu L \ln \big(b/a\big)}{2\pi}\\ Z_o = \sqrt{\frac{L}{C}} = \sqrt{\frac{\frac{\mu L\ln(b/a)}{2\pi}}{{\frac{2\pi L\epsilon}{\ln(b/a)}}}} = \sqrt{\frac{\mu}{\epsilon}\bigg(\frac{\ln(b/a)}{2\pi}\bigg)^2}=\frac{\ln(b/a)}{2\pi}\sqrt{\frac{\mu}{\epsilon}}\\ $

c) no longer supports TEM mode; loss will cause $ \bar{E}_z \ne 0 $ and/or $ \bar{H}_z \ne 0 $ due to variation of fields along z (attenuation)

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison