(Created page with "<math>\left\{ \begin{array}{ll} \bar{E}_1 = \hat{x}E_{io}e^{-j\beta_1Z} + \hat{x}(rE_{io})e^{+j\beta_1Z}\\ \bar{H}_1 = \hat{y}\frac{E_{io}}{n_1}e^{-j\beta_1Z} - \hat{y}\big(\f...")
 
Line 18: Line 18:
  
 
BC's (at <math>z = 0</math>) :  
 
BC's (at <math>z = 0</math>) :  
\begin{equation}\label{eq1}E_{1t} =  E_{2t}\end{equation}
 
\begin{equation}D_{1n} = D_{2n} = 0\end{equation}
 
\begin{equation}\label{eq3}H_{1t} = H_{2t}\end{equation}
 
\begin{equation}B_{1n} = B_{2n} =0\end{equation}
 
  
\ref{eq1} <math>\to E_{io} + r E_{io} = t E_{io}</math>
+
<math>\label{eq1}E_{1t} =  E_{2t}</math>  (1)<br>
 +
<math>D_{1n} = D_{2n} = 0</math>  (2)<br>
 +
<math>\label{eq3}H_{1t} = H_{2t}</math>  (3)<br>
 +
<math>B_{1n} = B_{2n} =0</math>  (4)<br>
  
\hspace{0.8cm}<math>1+r=t</math><br>
+
(1) <math>\to E_{io} + r E_{io} = t E_{io}</math>
<math>\ref{eq3} \to \frac{E_{io}}{n_1} -\frac{rE_{io}}{n_1} = \frac{tE_{io}}{n_2}</math>
+
 
 +
<math>1+r=t</math><br>
 +
(3) <math>\to \frac{E_{io}}{n_1} -\frac{rE_{io}}{n_1} = \frac{tE_{io}}{n_2}</math>
  
 
<math>\hspace{0.8cm}\frac{n_2}{n_1}(1-r) = t</math><br>
 
<math>\hspace{0.8cm}\frac{n_2}{n_1}(1-r) = t</math><br>

Revision as of 12:03, 4 June 2017

$ \left\{ \begin{array}{ll} \bar{E}_1 = \hat{x}E_{io}e^{-j\beta_1Z} + \hat{x}(rE_{io})e^{+j\beta_1Z}\\ \bar{H}_1 = \hat{y}\frac{E_{io}}{n_1}e^{-j\beta_1Z} - \hat{y}\big(\frac{rE_{io}}{n_1}\big)e^{+j\beta_1Z}\\ \bar{E}_2 = \hat{x}(tE_{io})e^{-j\beta_2Z}\\ \bar{H}_2 = \hat{y}\frac{tE_{io}}{n_2}e^{-j\beta_2Z} \end{array} \right. $

Alt text

$ \left\{ \begin{array}{ll} \beta_i = \omega\sqrt{\mu_i\epsilon_i}<br> n_i= \sqrt{\frac{\mu_i}{\epsilon_i}}<br> \end{array} \right. $

BC's (at $ z = 0 $) :

$ \label{eq1}E_{1t} = E_{2t} $ (1)
$ D_{1n} = D_{2n} = 0 $ (2)
$ \label{eq3}H_{1t} = H_{2t} $ (3)
$ B_{1n} = B_{2n} =0 $ (4)

(1) $ \to E_{io} + r E_{io} = t E_{io} $

$ 1+r=t $
(3) $ \to \frac{E_{io}}{n_1} -\frac{rE_{io}}{n_1} = \frac{tE_{io}}{n_2} $

$ \hspace{0.8cm}\frac{n_2}{n_1}(1-r) = t $
2 equations, 2 unknowns: $ r, t $

$ \frac{n_2}{n_1}(1-r) =1+r $
$ r\big(1+\frac{n_2}{n_1}\big) = \frac{n_2}{n_1} -1 $
$ r=\frac{ \frac{n_2}{n_1} -1}{\frac{n_2}{n_1}+1} $
$ r = \frac{n_2-n_1}{n_2+n_1} $

$ t=1+r $
$ t = 1+\frac{n_2-n_1}{n_2+n_1} $
$ t = \frac{2n_2}{n_2+n_1} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva