(Created page with "Category:ECE Category:QE Category:CNSIP Category:problem solving Category:random variables <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qu...")
 
 
Line 24: Line 24:
  
 
Let <math class="inline">\mathbf{X}_{t}</math>  be a zero mean continuous parameter random process. Let <math class="inline">g(t)</math>  and <math class="inline">w\left(t\right)</math>  be measurable functions defined on the real numbers. Further, let <math class="inline">w\left(t\right)</math>  be even. Let the autocorrelation function of <math class="inline">\mathbf{X}_{t}</math>  be <math class="inline">\frac{g\left(t_{1}\right)g\left(t_{2}\right)}{w\left(t_{1}-t_{2}\right)}</math> . From the new random process <math class="inline">\mathbf{Y}_{i}=\frac{\mathbf{X}\left(t\right)}{g\left(t\right)}</math> . Is <math class="inline">\mathbf{Y}_{t}</math>  w.s.s. ?
 
Let <math class="inline">\mathbf{X}_{t}</math>  be a zero mean continuous parameter random process. Let <math class="inline">g(t)</math>  and <math class="inline">w\left(t\right)</math>  be measurable functions defined on the real numbers. Further, let <math class="inline">w\left(t\right)</math>  be even. Let the autocorrelation function of <math class="inline">\mathbf{X}_{t}</math>  be <math class="inline">\frac{g\left(t_{1}\right)g\left(t_{2}\right)}{w\left(t_{1}-t_{2}\right)}</math> . From the new random process <math class="inline">\mathbf{Y}_{i}=\frac{\mathbf{X}\left(t\right)}{g\left(t\right)}</math> . Is <math class="inline">\mathbf{Y}_{t}</math>  w.s.s. ?
 
+
----
 +
==Share and discuss your solutions below.==
 +
----
 +
==Solution 1==
 
<math class="inline">E\left[\mathbf{Y}\left(t\right)\right]=E\left[\frac{\mathbf{X}\left(t\right)}{g\left(t\right)}\right]=\frac{1}{g\left(x\right)}E\left[\mathbf{X}\left(t\right)\right]=0.</math>  
 
<math class="inline">E\left[\mathbf{Y}\left(t\right)\right]=E\left[\frac{\mathbf{X}\left(t\right)}{g\left(t\right)}\right]=\frac{1}{g\left(x\right)}E\left[\mathbf{X}\left(t\right)\right]=0.</math>  
  
Line 33: Line 36:
 
<math class="inline">\therefore\;\mathbf{Y}_{t}\text{ is wide-sense stationary.}</math>  
 
<math class="inline">\therefore\;\mathbf{Y}_{t}\text{ is wide-sense stationary.}</math>  
 
<br>
 
<br>
 +
----

Latest revision as of 17:37, 13 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

January 2002



3. (20 pts)

Let $ \mathbf{X}_{t} $ be a zero mean continuous parameter random process. Let $ g(t) $ and $ w\left(t\right) $ be measurable functions defined on the real numbers. Further, let $ w\left(t\right) $ be even. Let the autocorrelation function of $ \mathbf{X}_{t} $ be $ \frac{g\left(t_{1}\right)g\left(t_{2}\right)}{w\left(t_{1}-t_{2}\right)} $ . From the new random process $ \mathbf{Y}_{i}=\frac{\mathbf{X}\left(t\right)}{g\left(t\right)} $ . Is $ \mathbf{Y}_{t} $ w.s.s. ?


Share and discuss your solutions below.


Solution 1

$ E\left[\mathbf{Y}\left(t\right)\right]=E\left[\frac{\mathbf{X}\left(t\right)}{g\left(t\right)}\right]=\frac{1}{g\left(x\right)}E\left[\mathbf{X}\left(t\right)\right]=0. $

$ E\left[\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)\right]=E\left[\frac{\mathbf{X}\left(t_{1}\right)\mathbf{X}^{\star}\left(t_{2}\right)}{g\left(t_{1}\right)g\left(t_{2}\right)}\right]=\frac{1}{g\left(t_{1}\right)g\left(t_{2}\right)}E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{\star}\left(t_{2}\right)\right] $$ =\frac{1}{g\left(t_{1}\right)g\left(t_{2}\right)}\times\frac{g\left(t_{1}\right)g\left(t_{2}\right)}{w\left(t_{1}-t_{2}\right)}=\frac{1}{w\left(t_{1}-t_{2}\right)}, $

which depends on $ t_{1}-t_{2} $ .
$ \therefore\;\mathbf{Y}_{t}\text{ is wide-sense stationary.} $


Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch