Line 27: Line 27:
 
Given two coins; the first coin is fair and the second coin has two heads. One coin is picked at random and tossed two times. It shows heads both times. What is the probability that the coin picked is fair?
 
Given two coins; the first coin is fair and the second coin has two heads. One coin is picked at random and tossed two times. It shows heads both times. What is the probability that the coin picked is fair?
  
:'''Click [[ECE_PhD_QE_CNSIP_2001_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2001_Problem1.1|answers and discussions]]'''
+
:'''Click [[ECE_PhD_QE_CNSIP_Jan_2002_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_Jan_2002_Problem1.1|answers and discussions]]'''
 
----
 
----
 
'''Part 2.'''
 
'''Part 2.'''
Line 35: Line 35:
 
Let <math class="inline">\mathbf{X}_{t}</math>  and <math class="inline">\mathbf{Y}_{t}</math>  by jointly wide sense stationary continous parameter random processes with <math class="inline">E\left[\left|\mathbf{X}\left(0\right)-\mathbf{Y}\left(0\right)\right|^{2}\right]=0</math> . Show that <math class="inline">R_{\mathbf{X}}\left(\tau\right)=R_{\mathbf{Y}}\left(\tau\right)=R_{\mathbf{XY}}\left(\tau\right)</math> .
 
Let <math class="inline">\mathbf{X}_{t}</math>  and <math class="inline">\mathbf{Y}_{t}</math>  by jointly wide sense stationary continous parameter random processes with <math class="inline">E\left[\left|\mathbf{X}\left(0\right)-\mathbf{Y}\left(0\right)\right|^{2}\right]=0</math> . Show that <math class="inline">R_{\mathbf{X}}\left(\tau\right)=R_{\mathbf{Y}}\left(\tau\right)=R_{\mathbf{XY}}\left(\tau\right)</math> .
  
:'''Click [[ECE_PhD_QE_CNSIP_2001_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2001_Problem1.2|answers and discussions]]'''
+
:'''Click [[ECE_PhD_QE_CNSIP_Jan_2002_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_Jan_2002_Problem1.2|answers and discussions]]'''
 
----
 
----
 
'''Part 3.'''
 
'''Part 3.'''
Line 43: Line 43:
 
Let <math class="inline">\mathbf{X}_{t}</math>  be a zero mean continuous parameter random process. Let <math class="inline">g(t)</math>  and <math class="inline">w\left(t\right)</math>  be measurable functions defined on the real numbers. Further, let <math class="inline">w\left(t\right)</math>  be even. Let the autocorrelation function of <math class="inline">\mathbf{X}_{t}</math>  be <math class="inline">\frac{g\left(t_{1}\right)g\left(t_{2}\right)}{w\left(t_{1}-t_{2}\right)}</math> . From the new random process <math class="inline">\mathbf{Y}_{i}=\frac{\mathbf{X}\left(t\right)}{g\left(t\right)}</math> . Is <math class="inline">\mathbf{Y}_{t}</math>  w.s.s. ?
 
Let <math class="inline">\mathbf{X}_{t}</math>  be a zero mean continuous parameter random process. Let <math class="inline">g(t)</math>  and <math class="inline">w\left(t\right)</math>  be measurable functions defined on the real numbers. Further, let <math class="inline">w\left(t\right)</math>  be even. Let the autocorrelation function of <math class="inline">\mathbf{X}_{t}</math>  be <math class="inline">\frac{g\left(t_{1}\right)g\left(t_{2}\right)}{w\left(t_{1}-t_{2}\right)}</math> . From the new random process <math class="inline">\mathbf{Y}_{i}=\frac{\mathbf{X}\left(t\right)}{g\left(t\right)}</math> . Is <math class="inline">\mathbf{Y}_{t}</math>  w.s.s. ?
  
:'''Click [[ECE_PhD_QE_CNSIP_2001_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2001_Problem1.3|answers and discussions]]'''
+
:'''Click [[ECE_PhD_QE_CNSIP_Jan_2002_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_Jan_2002_Problem1.3|answers and discussions]]'''
 
----
 
----
 
'''Part 4.'''
 
'''Part 4.'''
Line 63: Line 63:
 
Find the probability density function of the first order statistic. (You may assume n  is odd.)
 
Find the probability density function of the first order statistic. (You may assume n  is odd.)
  
:'''Click [[ECE_PhD_QE_CNSIP_2001_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2001_Problem1.4|answers and discussions]]'''
+
:'''Click [[ECE_PhD_QE_CNSIP_Jan_2002_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_Jan_2002_Problem1.4|answers and discussions]]'''
  
 
----
 
----
Line 72: Line 72:
 
Let <math class="inline">\mathbf{X}</math>  be a random variable with absolutely continuous probability distribution function. Show that for any <math class="inline">\alpha>0</math>  and any real number <math class="inline">s</math> :<math class="inline">P\left(e^{s\mathbf{X}}\geq\alpha\right)\leq\frac{\phi\left(s\right)}{\alpha}</math> where <math class="inline">\phi\left(s\right)</math>  is the moment generating function, <math class="inline">\phi\left(s\right)=E\left[e^{s\mathbf{X}}\right]</math> . Note: <math class="inline">\phi\left(s\right)</math>  can be related to the Laplace Transform of <math class="inline">f_{\mathbf{X}}\left(x\right)</math> .
 
Let <math class="inline">\mathbf{X}</math>  be a random variable with absolutely continuous probability distribution function. Show that for any <math class="inline">\alpha>0</math>  and any real number <math class="inline">s</math> :<math class="inline">P\left(e^{s\mathbf{X}}\geq\alpha\right)\leq\frac{\phi\left(s\right)}{\alpha}</math> where <math class="inline">\phi\left(s\right)</math>  is the moment generating function, <math class="inline">\phi\left(s\right)=E\left[e^{s\mathbf{X}}\right]</math> . Note: <math class="inline">\phi\left(s\right)</math>  can be related to the Laplace Transform of <math class="inline">f_{\mathbf{X}}\left(x\right)</math> .
  
:'''Click [[ECE_PhD_QE_CNSIP_2001_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2001_Problem1.4|answers and discussions]]'''
+
:'''Click [[ECE_PhD_QE_CNSIP_Jan_2002_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_Jan_2002_Problem1.4|answers and discussions]]'''
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 01:43, 9 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

January 2002



Question

Part 1.

1. (20 pts)

Given two coins; the first coin is fair and the second coin has two heads. One coin is picked at random and tossed two times. It shows heads both times. What is the probability that the coin picked is fair?

Click here to view student answers and discussions

Part 2.

2. (20 pts)

Let $ \mathbf{X}_{t} $ and $ \mathbf{Y}_{t} $ by jointly wide sense stationary continous parameter random processes with $ E\left[\left|\mathbf{X}\left(0\right)-\mathbf{Y}\left(0\right)\right|^{2}\right]=0 $ . Show that $ R_{\mathbf{X}}\left(\tau\right)=R_{\mathbf{Y}}\left(\tau\right)=R_{\mathbf{XY}}\left(\tau\right) $ .

Click here to view student answers and discussions

Part 3.

3. (20 pts)

Let $ \mathbf{X}_{t} $ be a zero mean continuous parameter random process. Let $ g(t) $ and $ w\left(t\right) $ be measurable functions defined on the real numbers. Further, let $ w\left(t\right) $ be even. Let the autocorrelation function of $ \mathbf{X}_{t} $ be $ \frac{g\left(t_{1}\right)g\left(t_{2}\right)}{w\left(t_{1}-t_{2}\right)} $ . From the new random process $ \mathbf{Y}_{i}=\frac{\mathbf{X}\left(t\right)}{g\left(t\right)} $ . Is $ \mathbf{Y}_{t} $ w.s.s. ?

Click here to view student answers and discussions

Part 4.

4. (20 pts)

Let $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n} $ be i.i.d. random variables with absolutely continuous probability distribution function $ F\left(x\right) $ . Let the random variable $ \mathbf{Y}_{j} $ be the $ j $ -th order statistic of the $ \mathbf{X}_{i} $ 's. that is: $ \mathbf{Y}_{j}=j\text{-th smallest of }\left\{ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}\right\} $ .

(a)

What is another name for the first order statistic?

(b)

What is another name for the n/2 order statistic?

(c)

Find the probability density function of the first order statistic. (You may assume n is odd.)

Click here to view student answers and discussions

Part 5.

5. (20 pts)

Let $ \mathbf{X} $ be a random variable with absolutely continuous probability distribution function. Show that for any $ \alpha>0 $ and any real number $ s $ :$ P\left(e^{s\mathbf{X}}\geq\alpha\right)\leq\frac{\phi\left(s\right)}{\alpha} $ where $ \phi\left(s\right) $ is the moment generating function, $ \phi\left(s\right)=E\left[e^{s\mathbf{X}}\right] $ . Note: $ \phi\left(s\right) $ can be related to the Laplace Transform of $ f_{\mathbf{X}}\left(x\right) $ .

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn