(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:random variables]]
 
[[Category:random variables]]
 +
[[Category:probability]]
 +
 +
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 +
January 2001
 +
</center>
 +
----
 +
----
 +
=Part 5=
 +
 +
Let a linear discrete parameter shift-invariant system have the following difference equation: <math class="inline">y\left(n\right)=0.7y\left(n-1\right)+x\left(n\right)</math> where <math class="inline">x\left(n\right)</math>  in the input and <math class="inline">y\left(n\right)</math>  is the output. Now suppose this system has as its input the discrete parameter random process <math class="inline">\mathbf{X}_{n}</math> . You may assume that the input process is zero-mean i.i.d.
 +
 +
'''(a) (5 pts)''' Is the input wide-sense stationary (show your work)?
 +
 +
'''(b) (5 pts)''' Is the output process wide-sense stationary (show your work)?
 +
 +
'''(c) (5 pts)''' Find the autocorrelation function of the input process.
 +
 +
'''(d) (5 pts)''' Find the autocorrelation function, in closed form, for the output process.
  
==Question from [[ECE_PhD_QE_CNSIP_Jan_2001_Problem1|ECE QE January 2001]]==
 
Question here
 
 
----
 
----
 
==Share and discuss your solutions below.==
 
==Share and discuss your solutions below.==
 
----
 
----
 
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])=
 
=Solution 1 (retrived from [[ECE600_QE_2000_August|here]])=
Write it here
+
'''(a)'''
 +
 
 +
<math class="inline">E\left[\mathbf{X}_{n}\right]=0.</math>
 +
 
 +
<math class="inline">R_{\mathbf{XX}}\left(n+m,\; n\right)</math>
 +
 
 +
<math class="inline">\therefore\;\mathbf{X}_{n}\text{ is wide-sense stationary.}</math>
 +
 
 +
'''(b)'''
 +
 
 +
<math class="inline">E\left[\mathbf{Y}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]+E\left[\mathbf{X}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]=0.7^{2}E\left[\mathbf{Y}_{n-2}\right]=0.7^{n}E\left[\mathbf{Y}_{0}\right]=0.</math>
 +
 
 +
<math class="inline">E\left[\mathbf{Y}_{0}\right]=E\left[\sum_{n=-\infty}^{\infty}h\left(0-n\right)\mathbf{X}\left(n\right)\right]=\sum_{n=-\infty}^{\infty}h\left(-n\right)E\left[\mathbf{X}\left(n\right)\right]=0.</math>
 +
 
 +
<math class="inline">R_{\mathbf{YY}}\left(n+m,\; n\right)</math>
 +
 
 +
<math class="inline">R_{\mathbf{YY}}\left(n+m,\; n\right)</math>  depends on the time difference <math class="inline">m</math> . Thus, <math class="inline">\mathbf{Y}_{n}</math>  is wide-sense stationary.
 +
 
 +
'''(c) '''
 +
 
 +
<math class="inline">R_{\mathbf{XX}}\left(n,n+m\right)=R_{\mathbf{X}}\left(m\right)=\sigma_{\mathbf{X}}^{2}\delta\left(m\right).</math>
 +
 
 +
'''(d) '''
 +
 
 +
<math class="inline">R_{\mathbf{Y}}\left(m\right)</math>
 +
 
 +
<math class="inline">\because\; E\left[\mathbf{X}\left(n\right)\mathbf{Y}\left(m\right)\right]=E\left[\sum_{k=-\infty}^{\infty}h\left(m-k\right)\mathbf{X}\left(n\right)\mathbf{X}\left(k\right)\right]=\sum_{k=-\infty}^{\infty}h\left(m-k\right)\left(\sigma_{\mathbf{X}}^{2}\delta\left(n-k\right)\right).</math>
 +
 
 
----
 
----
 
==Solution 2==
 
==Solution 2==

Latest revision as of 10:37, 13 September 2013


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

January 2001



Part 5

Let a linear discrete parameter shift-invariant system have the following difference equation: $ y\left(n\right)=0.7y\left(n-1\right)+x\left(n\right) $ where $ x\left(n\right) $ in the input and $ y\left(n\right) $ is the output. Now suppose this system has as its input the discrete parameter random process $ \mathbf{X}_{n} $ . You may assume that the input process is zero-mean i.i.d.

(a) (5 pts) Is the input wide-sense stationary (show your work)?

(b) (5 pts) Is the output process wide-sense stationary (show your work)?

(c) (5 pts) Find the autocorrelation function of the input process.

(d) (5 pts) Find the autocorrelation function, in closed form, for the output process.


Share and discuss your solutions below.


Solution 1 (retrived from here)

(a)

$ E\left[\mathbf{X}_{n}\right]=0. $

$ R_{\mathbf{XX}}\left(n+m,\; n\right) $

$ \therefore\;\mathbf{X}_{n}\text{ is wide-sense stationary.} $

(b)

$ E\left[\mathbf{Y}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]+E\left[\mathbf{X}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]=0.7^{2}E\left[\mathbf{Y}_{n-2}\right]=0.7^{n}E\left[\mathbf{Y}_{0}\right]=0. $

$ E\left[\mathbf{Y}_{0}\right]=E\left[\sum_{n=-\infty}^{\infty}h\left(0-n\right)\mathbf{X}\left(n\right)\right]=\sum_{n=-\infty}^{\infty}h\left(-n\right)E\left[\mathbf{X}\left(n\right)\right]=0. $

$ R_{\mathbf{YY}}\left(n+m,\; n\right) $

$ R_{\mathbf{YY}}\left(n+m,\; n\right) $ depends on the time difference $ m $ . Thus, $ \mathbf{Y}_{n} $ is wide-sense stationary.

(c)

$ R_{\mathbf{XX}}\left(n,n+m\right)=R_{\mathbf{X}}\left(m\right)=\sigma_{\mathbf{X}}^{2}\delta\left(m\right). $

(d)

$ R_{\mathbf{Y}}\left(m\right) $

$ \because\; E\left[\mathbf{X}\left(n\right)\mathbf{Y}\left(m\right)\right]=E\left[\sum_{k=-\infty}^{\infty}h\left(m-k\right)\mathbf{X}\left(n\right)\mathbf{X}\left(k\right)\right]=\sum_{k=-\infty}^{\infty}h\left(m-k\right)\left(\sigma_{\mathbf{X}}^{2}\delta\left(n-k\right)\right). $


Solution 2

Write it here.


Back to QE CS question 1, January 2001

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison