Line 42: Line 42:
 
</math>
 
</math>
  
Thus <math>E(X_i-S_n]E(S_n)=E((X_i-S_n)S_n)</math>, <math>S_n</math> and <math>X_i-S_n</math> are uncorrelated.
+
Thus <math>E(X_i-S_n)E(S_n)=E((X_i-S_n)S_n)</math>, <math>S_n</math> and <math>X_i-S_n</math> are uncorrelated.
 
----
 
----
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 02:13, 4 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


$ E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =\frac{1}{n}\sum_i^n E(X_i)=0 $

$ E(X_i-S_n)=E(X_i-\frac{1}{n}\sum_k^n X_k) =E(X_i)-E(\frac{1}{n}\sum_k^n X_k)=0 $

$ E((X_i-S_n)S_n)=E(X_iS_n-S_n^2) $

As for any $ i,j\in \{1,2,...,n\} $, we have $ E(X_i\cdot X_j) = E(X_i)E(X_j)=0 $

$ E(X_iS_n-S_n^2) = E(X_iS_n)-E(S_n^2)\\ =E(\sum_k^nX_iX_K) - E(\sum_i^n\sum_k^nX_iX_K)\\ =\sum_k^nE(X_iX_K) - \sum_i^n\sum_k^nE(X_iX_K) \\ =0 $

Thus $ E(X_i-S_n)E(S_n)=E((X_i-S_n)S_n) $, $ S_n $ and $ X_i-S_n $ are uncorrelated.


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett