Line 36: Line 36:
  
 
<math>
 
<math>
\phi_{X+Y}(\omega) &= \phi_X(\omega)\phi_Y(\omega) \\
+
\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) \\
&= \left(\frac{\lambda}{\lambda-i\omega}\right)^2
+
= \left(\frac{\lambda}{\lambda-i\omega}\right)^2
 
</math>
 
</math>
 +
 +
Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. <math>\frac{1}{\lambda}</math>. Then the above expression becomes
 +
 +
<math>
 +
\phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu}-i\omega}\right)^2
 +
</math>
 +
 +
Multiplying by <math>\frac{\mu^2}{\mu^2}</math> gives
 +
 +
<math>
 +
\phi_{X+Y}(\omega) = \left(\frac{1}{1-i\omega\mu}\right)^2
 +
</math>
 +
  
 
[[ECE-QE_CE1-2015|Back to QE CE question 1, August 2015]]
 
[[ECE-QE_CE1-2015|Back to QE CE question 1, August 2015]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 22:00, 7 March 2016


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2015


Solution 3

For this problem, it is very useful to note that for any independent random variables $ X $ and $ Y $ and their characteristic functions $ \phi_X(\omega),\,\phi_Y(\omega) $ we have the following property:

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) $

We then note that the characteristic function of an exponential random variable $ Z $ is written as

$ \phi_Z (\omega) = \frac{\lambda}{\lambda - i\omega} $

where $ \lambda $ parameterizes the exponential distribution. As such, we can write the characteristic function of $ X+Y $ as

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) \\ = \left(\frac{\lambda}{\lambda-i\omega}\right)^2 $

Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. $ \frac{1}{\lambda} $. Then the above expression becomes

$ \phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu}-i\omega}\right)^2 $

Multiplying by $ \frac{\mu^2}{\mu^2} $ gives

$ \phi_{X+Y}(\omega) = \left(\frac{1}{1-i\omega\mu}\right)^2 $


Back to QE CE question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood