Line 54: Line 54:
 
=\frac{1}{(1+iw\mu)^2}
 
=\frac{1}{(1+iw\mu)^2}
 
</math>
 
</math>
 +
 +
===Solution 3===
 +
For this problem, it is very useful to note that for any independent random variables <math>X</math> and <math>Y</math> and their characteristic functions <math>\phi_X(\omega), \phi_Y(\omega)</math> we have the following property:
 +
 +
<math>
 +
\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega)
 +
</math>.
 +
 +
We then note that the characteristic function of an exponential random variable <math>Z</math> is written as
 +
 +
<math>
 +
\phi_{Z}(\omega) = \frac{\lambda}{\lambda - i\omega}
 +
</math>
 +
 +
where <math>\lambda</math> parameterizes the exponential distribution. As such, we can write the characteristic function of <math>X + Y</math> as
 +
 +
<math>
 +
\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) = \left(\frac{\lambda}{\lambda - i\omega}\right)^2
 +
</math>.
 +
 +
Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. <math>\frac{1}{\lambda}</math>. Then the above expression becomes
 +
 +
<math>
 +
\phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu} - i\omega}\right)^2.
 +
</math>.
 +
 +
Multiplying by <math>\frac{\mu}{\mu}</math> gives
 +
 +
<math>
 +
\phi_{X+Y}(\omega) = \left(\frac{1}{1-i\omega\mu}\right)^2
 +
</math>
 +
 
----
 
----
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 16:40, 26 January 2016


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution 1

Let $ \lambda = \frac{1}{\mu} $, then $ E(X)=E(Y)=\frac{1}{\lambda} $.

$ \phi_{X+Y}=E[e^{it(X+Y)}]=\int_{X}\int_{Y}e^{it(X+Y)}p(x,y)dxdy $

As X and Y are independent

$ \phi_{X+Y}=\int_{X}\int_{Y}e^{it(x+y)}p(x)p(y)dxdy = \int_{X}e^{itx}p(x)dx\int_{Y}e^{ity}p(y)dy=\phi_{X}\phi_{Y} $

And $ \phi_{X}=E[e^{itX}]=\int_{-\infty}^{\infty}e^{itx}\lambda e^{-\lambda x} dx \\ = \lambda \int_{-\infty}^{\infty}e^{-(\lambda -iu)x} dx = -\frac{\lambda}{\lambda-iu}e^{-(\lambda-iu)x}|_0^\infty\\ =\frac{\lambda}{\lambda-iu} $

So $ \phi_{X+Y}=E[e^{it(X+Y)}]=\phi_{X}\phi_{Y} =( \frac{\lambda}{\lambda-iu})^2=\frac{1}{(1+iu\mu)^2} $

Solution 2

$ \phi_X(w)=E[e^{iwX}]=\int_0^{+\infty}e^{iwX}\frac{1}{\mu}e^{-\frac{x}{\mu}}dx=e^{X(iw-\frac{1}{\mu})}\frac{1}{\mu}\frac{1}{iw-\frac{1}{\mu}}|_0^{+\infty}\\ = 0 - \frac{1}{\mu}\cdot\frac{1}{iw-\frac{1}{\mu}}=\frac{1}{1-iw\mu}\\ \phi_{X+Y}(w)=E[e^{iw(X+Y)}]\\ =\int\int e^{iw(X+Y)}f_X(x)f_Y(y)dxdy = \int e^{iwx}f_X(x)dx \cdot \int e^{iwy}f_Y(y)dy=\phi_X(w)\phi_Y(w)\\ =\frac{1}{(1+iw\mu)^2} $

Solution 3

For this problem, it is very useful to note that for any independent random variables $ X $ and $ Y $ and their characteristic functions $ \phi_X(\omega), \phi_Y(\omega) $ we have the following property:

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) $.

We then note that the characteristic function of an exponential random variable $ Z $ is written as

$ \phi_{Z}(\omega) = \frac{\lambda}{\lambda - i\omega} $

where $ \lambda $ parameterizes the exponential distribution. As such, we can write the characteristic function of $ X + Y $ as

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) = \left(\frac{\lambda}{\lambda - i\omega}\right)^2 $.

Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. $ \frac{1}{\lambda} $. Then the above expression becomes

$ \phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu} - i\omega}\right)^2. $.

Multiplying by $ \frac{\mu}{\mu} $ gives

$ \phi_{X+Y}(\omega) = \left(\frac{1}{1-i\omega\mu}\right)^2 $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett