Line 51: Line 51:
 
                 \begin{array}{cc}
 
                 \begin{array}{cc}
 
                   \frac{p+\lambda t}{1+2\lambda t}, k =0 \\
 
                   \frac{p+\lambda t}{1+2\lambda t}, k =0 \\
                   \frac{1-p+\lambda t}{1+2\lambda t}, k =1 \\
+
                   \frac{1-p+\lambda t}{1+2\lambda t}, k =1\\
 
                 0, else
 
                 0, else
 
                 \end{array}
 
                 \end{array}

Revision as of 12:25, 7 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution 1

$ P((Z(t)=0) = P(Z(0)=0, N(t)=Even) + P(Z(0)=1, N(t)=Odd)\\ = pP( N(t)=Even) + (1-p)P( N(t)=Odd)\\ =p\sum_{m=0,1, 2, ...}P(N(t) = 2m)+ (1-p)\sum_{n=0,1,2,...}P(N(t)=2n-1)\\ =p\sum_{m=0,1,2,...}\frac{1}{1+\lambda t}(\frac{\lambda t}{1+\lambda t})^2m + (1-p)\sum_{n=0,1,2,...}\frac{1}{1+\lambda t}(\frac{\lambda t}{1+\lambda t})^{2n-1}\\ =p\cdot\frac{1}{1+\lambda t}\cdot \frac{1}{1-(\frac{\lambda t}{1+\lambda t})^2} + (1-p)\cdot\frac{\lambda t}{1+\lambda t}\cdot\frac{1}{1+\lambda t}\cdot \frac{1}{1-(\frac{\lambda t}{1+\lambda t})^2}\\ =\frac{p+\lambda t}{1+2\lambda t} $

$ P((Z(t)=1) = 1 - P((Z(t)=0) = \frac{1+\lambda t - p}{1+2\lambda t} $

Solution 2

$ P(Z(t)=0)=P(Z(t)=0|N(t)=even)P(N(t)=even)+P(Z(t)=0|N(t)=odd)P(N(t)=odd) $

Note that $ \{Z(t)=0|N(t)=odd\}=\{Z(0)=1\} $ and $ \{Z(t)=0|N(t)=even\}=\{Z(0)=0\} $, therefore,

$ P(Z(t)=0)=P(Z(0)=0)P(N(t)=even)+P(Z(0)=1)P(N(t)=odd)\\ =p\sum_{k=0}^{\infty}\frac{1}{1+\lambda t}\cdot (\frac{\lambda t}{1+\lambda t})^{2k}+(1-p)\sum_{k=0}^{\infty}\frac{1}{1+\lambda t}\cdot (\frac{\lambda t}{1+\lambda t})^{2k+1}\\ =\frac{p}{1+\lambda t}\cdot \frac{1}{1-(\frac{\lambda t}{1+\lambda t})^2}+ \frac{(1-p)\lambda t}{(1+\lambda t)^2}\cdot \frac{1}{1-(\frac{\lambda t}{1+\lambda t})^2}\\ =\frac{p+\lambda t}{1+2\lambda t}\\ P(Z(t)=1) = 1- P(Z(t)=0) = 1-\frac{p+\lambda t}{1+2\lambda t} = \frac{1-p+\lambda t}{1+2\lambda t}\\ P(Z(t)=k)=\left\{ \begin{array}{cc} \frac{p+\lambda t}{1+2\lambda t}, k =0 \\ \frac{1-p+\lambda t}{1+2\lambda t}, k =1\\ 0, else \end{array} \right. \] $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett