Line 47: Line 47:
  
 
<math>
 
<math>
{P(X+Y=n)}
+
P(X+Y=n)
 
={\sum_{k=0}^{k=n}P(X=k,Y=n-k)}
 
={\sum_{k=0}^{k=n}P(X=k,Y=n-k)}
 
={\sum_{k=0}^{k=n}P(X=k)P(Y=n-k)}
 
={\sum_{k=0}^{k=n}P(X=k)P(Y=n-k)}
Line 57: Line 57:
 
\right)
 
\right)
 
\lambda_1^k\lambda_2^{n-k}
 
\lambda_1^k\lambda_2^{n-k}
&=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n
+
=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n
 
</math>
 
</math>
  
Line 69: Line 69:
 
\right)
 
\right)
 
(\frac{\lambda_1}{\lambda_1+\lambda_2})^x(\frac{\lambda_2}{\lambda_1+\lambda_2})^{n-x}
 
(\frac{\lambda_1}{\lambda_1+\lambda_2})^x(\frac{\lambda_2}{\lambda_1+\lambda_2})^{n-x}
\end{align*}
 
 
</math>
 
</math>
 
----
 
----

Revision as of 13:17, 3 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


First of all, the conditional distribution can be written as:

$ P(X=x|X+Y=n) =\frac{P(X=x, X+Y=n)}{P(X+Y=n)} =\frac{P(X=x, Y=n-x)}{P(X+Y=n)} $

And

$ P(X=x, Y=n-x) =P(X=x)P(Y=n-x)\\ =\frac{e^{-\lambda_1}\lambda^x}{x!}\times \frac{e^{-\lambda_2}\lambda^(n-x)}{(n-x)!} =\frac{e^{-(\lambda_1+\lambda_2)}}{x!} \left( \begin{array}{c} n\\x \end{array} \right) \lambda_1^x\lambda_2^{n-x} $

Also

$ P(X+Y=n) ={\sum_{k=0}^{k=n}P(X=k,Y=n-k)} ={\sum_{k=0}^{k=n}P(X=k)P(Y=n-k)} =\frac{e^{-(\lambda_1+\lambda_2)}}{n!}\sum_{k=0}^{k=n} \left( \begin{array}{c} n\\k \end{array} \right) \lambda_1^k\lambda_2^{n-k} =\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n $

So, we get $ P(X=x|X+Y=n) = \left( \begin{array}{c} n\\k \end{array} \right) (\frac{\lambda_1}{\lambda_1+\lambda_2})^x(\frac{\lambda_2}{\lambda_1+\lambda_2})^{n-x} $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett