Line 34: Line 34:
 
P(X=x, Y=n-x)
 
P(X=x, Y=n-x)
 
=P(X=x)P(Y=n-x)\\
 
=P(X=x)P(Y=n-x)\\
=\frac{e^{-\lambda_1}\lambda^x}{x!}\times \frac{e^{-\lambda_2}\lambda^(n-x)}{(n-x)!}\\
+
=\frac{e^{-\lambda_1}\lambda^x}{x!}\times \frac{e^{-\lambda_2}\lambda^(n-x)}{(n-x)!}
 
=\frac{e^{-(\lambda_1+\lambda_2)}}{x!}
 
=\frac{e^{-(\lambda_1+\lambda_2)}}{x!}
 
\left(
 
\left(
Line 41: Line 41:
 
\end{array}
 
\end{array}
 
\right)
 
\right)
\lambda_1^x\lambda_2^{n-x}\\
+
\lambda_1^x\lambda_2^{n-x}
 
</math>
 
</math>
 +
 +
Also
 +
 
<math>
 
<math>
 
{P(X+Y=n)}
 
{P(X+Y=n)}
Line 56: Line 59:
 
&=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n
 
&=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n
 
</math>
 
</math>
So  
+
 
 +
So, we get
 
<math>
 
<math>
 
P(X=x|X+Y=n) =  
 
P(X=x|X+Y=n) =  

Revision as of 13:14, 3 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


First of all, the conditional distribution can be written as:

$ P(X=x|X+Y=n) =\frac{P(X=x, X+Y=n)}{P(X+Y=n)} =\frac{P(X=x, Y=n-x)}{P(X+Y=n)} $

And

$ P(X=x, Y=n-x) =P(X=x)P(Y=n-x)\\ =\frac{e^{-\lambda_1}\lambda^x}{x!}\times \frac{e^{-\lambda_2}\lambda^(n-x)}{(n-x)!} =\frac{e^{-(\lambda_1+\lambda_2)}}{x!} \left( \begin{array}{c} n\\x \end{array} \right) \lambda_1^x\lambda_2^{n-x} $

Also

$ {P(X+Y=n)} ={\sum_{k=0}^{k=n}P(X=k,Y=n-k)}\\ ={\sum_{k=0}^{k=n}P(X=k)P(Y=n-k)}\\ =\frac{e^{-(\lambda_1+\lambda_2)}}{n!}\sum_{k=0}^{k=n} \left( \begin{array}{c} n\\k \end{array} \right) \lambda_1^k\lambda_2^{n-k} &=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n $

So, we get $ P(X=x|X+Y=n) = \left( \begin{array}{c} n\\k \end{array} \right) (\frac{\lambda_1}{\lambda_1+\lambda_2})^x(\frac{\lambda_2}{\lambda_1+\lambda_2})^{n-x} \end{align*} $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal