(New page: Category:ECE Category:QE Category:CNSIP Category:problem solving Category:random variables Category:probability <center> <font size= 4> [[ECE_PhD_Qualifying_Exams...)
 
m
 
(3 intermediate revisions by one other user not shown)
Line 23: Line 23:
 
----
 
----
 
=Part 3=
 
=Part 3=
Let <math>X_1,X_2,...</math> be a sequence of jointly Gaussian random variables with covariance
+
Let <math>X</math> be an exponential random variable with parameter <math>\lambda</math>, so that <math>f_X(x)=\lambda{exp}(-\lambda{x})u(x)</math>. Find the variance of <math>X</math>. You must show all of your work.
 
+
<math>Cov(X_i,X_j) = \left\{ \begin{array}{ll}
+
{\sigma}^2, & i=j\\
+
\rho{\sigma}^2, & |i-j|=1\\
+
0, & otherwise
+
  \end{array} \right.</math>
+
 
+
Suppose we take 2 consecutive samples from this sequence to form a vector <math>X</math>, which is then linearly transformed to form a 2-dimensional random vector <math>Y=AX</math>. Find a matrix <math>A</math> so that the components of <math>Y</math> are independent random variables You must justify your answer.
+
 
----
 
----
 
=Solution 1=
 
=Solution 1=
  
Suppose
+
<math>Var(X)=E(X^2)-E(X)^2</math>
  
<math>A=\left(\begin{array}{cc}
+
First,
a & b\\
+
c & d
+
\end{array} \right)</math>.
+
  
Then the new 2-D random vector can be expressed as
+
<math>E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx</math>
  
<math>Y=\left(\begin{array}{c}Y_1 \\ Y_2\end{array} \right)=A\left(\begin{array}{c}X_i \\ X_j\end{array} \right)=\left(\begin{array}{c}aX_i+bX_j \\ cX_i+dX_j\end{array} \right)</math>
+
Since
  
 +
<math>\begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\
 +
=\int -x^2 de^{-\lambda x}\\
 +
=-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\
 +
=-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\
 +
=-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}
 +
\end{array}</math>,
  
Therefore,
+
We have
  
<math>\begin{array}{l}Cov(Y_1,Y_2)=E[(aX_i+bX_j-E(aX_i+bX_j))(cX_i+dX_j-E(cX_i+dX_j))] \\
+
<math>E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty</math>
=E[(aX_i+bX_j-aE(X_i)-bE(X_j))(cX_i+dX_j-cE(X_i)-dE(X_j))] \\
+
=E[acX_i^2+adX_iX_j-acX_iE(X_i)-adX_iE(X_j)+bcX_iX_j+bdX_j^2-bcX_jE(X_i)\\
+
-bdX_jE(X_j)-acX_iE(X_i)-adX_jE(X_i)+acE(X_i)^2+adE(X_i)E(X_j)\\
+
-bcX_iE(X_j)-bdX_jE(X_j)+bcE(X_i)E(X_j)+bdE(X_i)^2]\\
+
=E(ac(X_i-E(X_i))^2+(ad+bc)(X_i-E(X_i)(X_j-E(X_j))+bd(X_j-E(X_j))^2]\\
+
=(ac)Cov(X_i,X_i)+(ad+bc)Cov(X-i,X_j)+(bd)Cov(X_j,X_j)\\
+
=ac\sigma^2+(ad+bc)\rho\sigma^2+bd\sigma^2
+
\end{array}</math>
+
  
Let the above formula equal to 0 and <math>a=b=d=1</math>, we get <math>c=-1</math>.
+
By L'Hospital's rule, we have
  
Therefore, a solution is
+
<math>\lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0</math>
  
<math>A=\left(\begin{array}{cc}
+
and
1 & 1\\
+
-1 & 1
+
\end{array} \right)</math>.
+
  
 +
<math>\lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0</math>.
  
 +
Therefore,
  
----
+
<math>E(X) = \frac{2}{\lambda^2}</math>.
==Solution 2==
+
  
Assume
+
Then we take a look at <math>E(X)</math>.
  
<math>Y=\left(\begin{array}{c}Y_i \\ Y_j\end{array} \right)=A\left(\begin{array}{c}X_i \\ X_j\end{array} \right)=\left(\begin{array}{c}a_{11}X_i+a_{12}X_j \\ a_{21}X_i+a_{22}X_j\end{array} \right)</math>.
+
<math>E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx</math>
  
Then
+
<math>\begin{array}{l}
 
+
\int x\lambda{e}^{-\lambda{x}}dx\\
<math>\begin{array}{l}E(Y_iY_j)=E[(a_{11}X_i+a_{12}X_j)(a_{21}X_i+a_{22}X_j)]\\
+
=\int xde^(\lambda x)\\
=a_{11}a_{21}\sigma^2+a_{12}a_{22}\sigma^2+(a_{11}a_{21}+a_{22}a_{11})E(X_iX_j)
+
=-xe^{-\lambda x}+\int e^{\lambda x}dx\\
 +
=-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\
 
\end{array}</math>
 
\end{array}</math>
  
For <math>|i-j|\geq1</math>, <math>E(X_i,X_j)=0</math>. Therefore, <math>a_{11}a_{21}+a_{12}a_{22}=0</math>.
+
Similar to the calculation of <math>E(X^2)</math>,
  
One solution can be
+
<math>E(X)=\frac{1}{\lambda}</math>.
  
<math>A=\left(\begin{array}{cc}
+
Therefore,
1 & -1\\
+
1 & 1
+
\end{array} \right)</math>.
+
  
 +
<math>Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2}</math>.
  
<font color="red"><u>'''Critique on Solution 2:'''</u>
+
----
 +
==Solution 2==
  
1. <math>E(Y_iY_j)=0</math> is not the condition for the two random variables to be independent.
+
<math>\begin{align}
 +
E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\
 +
&=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\
 +
&=-(xe^{-\lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\
 +
&=\frac{1}{x}
 +
\end{align}</math>
 +
 
 +
<math>\begin{align}
 +
E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\
 +
&=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\
 +
&=-(x^2e^{-\lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\
 +
&=\frac{2}{x^2}
 +
\end{align}</math>
 +
 
 +
Therefore,
 +
 
 +
<math>Var(X)=E(X^2)-E(X)^2=\frac{1}{\lambda^2}</math>
 +
 
 +
<font color="red"><u>'''Critique on Solution 2:'''</u>
  
2. "For <math>|i-j|\geq1</math>, <math>E(X_i,X_j)=0</math>" is not supported by the given conditions.
+
Solution 2 is correct. In addition, calculating <math>E(X)</math> first is better since the result can be used in calculating <math>E(X^2)</math>.
  
 
</font>
 
</font>

Latest revision as of 21:02, 5 August 2018


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2013



Part 3

Let $ X $ be an exponential random variable with parameter $ \lambda $, so that $ f_X(x)=\lambda{exp}(-\lambda{x})u(x) $. Find the variance of $ X $. You must show all of your work.


Solution 1

$ Var(X)=E(X^2)-E(X)^2 $

First,

$ E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx $

Since

$ \begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\ =\int -x^2 de^{-\lambda x}\\ =-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x} \end{array} $,

We have

$ E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty $

By L'Hospital's rule, we have

$ \lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0 $

and

$ \lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0 $.

Therefore,

$ E(X) = \frac{2}{\lambda^2} $.

Then we take a look at $ E(X) $.

$ E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx $

$ \begin{array}{l} \int x\lambda{e}^{-\lambda{x}}dx\\ =\int xde^(\lambda x)\\ =-xe^{-\lambda x}+\int e^{\lambda x}dx\\ =-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\ \end{array} $

Similar to the calculation of $ E(X^2) $,

$ E(X)=\frac{1}{\lambda} $.

Therefore,

$ Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2} $.


Solution 2

$ \begin{align} E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\ &=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\ &=-(xe^{-\lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\ &=\frac{1}{x} \end{align} $

$ \begin{align} E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\ &=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\ &=-(x^2e^{-\lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\ &=\frac{2}{x^2} \end{align} $

Therefore,

$ Var(X)=E(X^2)-E(X)^2=\frac{1}{\lambda^2} $

Critique on Solution 2:

Solution 2 is correct. In addition, calculating $ E(X) $ first is better since the result can be used in calculating $ E(X^2) $.


Back to QE CS question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang